pre-miRNA Information | |
---|---|
pre-miRNA | hsa-mir-29b-1 |
Genomic Coordinates | chr7: 130877459 - 130877539 |
Synonyms | MIRN29B1, miRNA29B1, MIR29B1 |
Description | Homo sapiens miR-29b-1 stem-loop |
Comment | Mourelatos et al. identified two copies of this sequence mapping to chromosome 7, and assigned the names mir-102-7.1 and mir-102-7.2 . Subsequent genome assemblies suggest the presence of only one miR-102 locus on chromosome 7. Human miR-102 is a homologue of mouse miR-29b (MIR:MI0000143) and so has been renamed here for consistency. |
RNA Secondary Structure | |
Associated Diseases | |
pre-miRNA | hsa-mir-29b-2 |
Genomic Coordinates | chr1: 207802443 - 207802523 |
Synonyms | MIRN29B2, mir-29b-2, MIR29B2 |
Description | Homo sapiens miR-29b-2 stem-loop |
Comment | This sequence was named mir-102-1 in reference . Human miR-102 is a homologue of mouse miR-29b (MIR:MI0000143) and so has been renamed here for consistency. |
RNA Secondary Structure | |
Associated Diseases |
Mature miRNA Information | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mature miRNA | hsa-miR-29b-3p | |||||||||||||||||||||
Sequence | 52| UAGCACCAUUUGAAAUCAGUGUU |74 | |||||||||||||||||||||
Evidence | Experimental | |||||||||||||||||||||
Experiments | Cloned | |||||||||||||||||||||
Editing Events in miRNAs |
|
|||||||||||||||||||||
SNPs in miRNA |
|
|||||||||||||||||||||
Putative Targets |
miRNA Expression profile | |
---|---|
Human miRNA Tissue Atlas | |
miRNAs in Extracellular Vesicles |
|
Circulating MicroRNA Expression Profiling |
Gene Information | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gene Symbol | COL1A1 | ||||||||||||||||||||
Synonyms | EDSC, OI1, OI2, OI3, OI4 | ||||||||||||||||||||
Description | collagen type I alpha 1 chain | ||||||||||||||||||||
Transcript | NM_000088 | ||||||||||||||||||||
Expression | |||||||||||||||||||||
Putative miRNA Targets on COL1A1 | |||||||||||||||||||||
3'UTR of COL1A1 (miRNA target sites are highlighted) |
>COL1A1|NM_000088|3'UTR 1 ACTCCCTCCATCCCAACCTGGCTCCCTCCCACCCAACCAACTTTCCCCCCAACCCGGAAACAGACAAGCAACCCAAACTG 81 AACCCCCTCAAAAGCCAAAAAATGGGAGACAATTTCACATGGACTTTGGAAAATATTTTTTTCCTTTGCATTCATCTCTC 161 AAACTTAGTTTTTATCTTTGACCAACCGAACATGACCAAAAACCAAAAGTGCATTCAACCTTACCAAAAAAAAAAAAAAA 241 AAAAGAATAAATAAATAACTTTTTAAAAAAGGAAGCTTGGTCCACTTGCTTGAAGACCCATGCGGGGGTAAGTCCCTTTC 321 TGCCCGTTGGGCTTATGAAACCCCAATGCTGCCCTTTCTGCTCCTTTCTCCACACCCCCCTTGGGGCCTCCCCTCCACTC 401 CTTCCCAAATCTGTCTCCCCAGAAGACACAGGAAACAATGTATTGTCTGCCCAGCAATCAAAGGCAATGCTCAAACACCC 481 AAGTGGCCCCCACCCTCAGCCCGCTCCTGCCCGCCCAGCACCCCCAGGCCCTGGGGGACCTGGGGTTCTCAGACTGCCAA 561 AGAAGCCTTGCCATCTGGCGCTCCCATGGCTCTTGCAACATCTCCCCTTCGTTTTTGAGGGGGTCATGCCGGGGGAGCCA 641 CCAGCCCCTCACTGGGTTCGGAGGAGAGTCAGGAAGGGCCACGACAAAGCAGAAACATCGGATTTGGGGAACGCGTGTCA 721 ATCCCTTGTGCCGCAGGGCTGGGCGGGAGAGACTGTTCTGTTCCTTGTGTAACTGTGTTGCTGAAAGACTACCTCGTTCT 801 TGTCTTGATGTGTCACCGGGGCAACTGCCTGGGGGCGGGGATGGGGGCAGGGTGGAAGCGGCTCCCCATTTTATACCAAA 881 GGTGCTACATCTATGTGATGGGTGGGGTGGGGAGGGAATCACTGGTGCTATAGAAATTGAGATGCCCCCCCAGGCCAGCA 961 AATGTTCCTTTTTGTTCAAAGTCTATTTTTATTCCTTGATATTTTTCTTTTTTTTTTTTTTTTTTTGTGGATGGGGACTT 1041 GTGAATTTTTCTAAAGGTGCTATTTAACATGGGAGGAGAGCGTGTGCGGCTCCAGCCCAGCCCGCTGCTCACTTTCCACC 1121 CTCTCTCCACCTGCCTCTGGCTTCTCAGGCCTCTGCTCTCCGACCTCTCTCCTCTGAAACCCTCCTCCACAGCTGCAGCC 1201 CATCCTCCCGGCTCCCTCCTAGTCTGTCCTGCGTCCTCTGTCCCCGGGTTTCAGAGACAACTTCCCAAAGCACAAAGCAG 1281 TTTTTCCCCCTAGGGGTGGGAGGAAGCAAAAGACTCTGTACCTATTTTGTATGTGTATAATAATTTGAGATGTTTTTAAT 1361 TATTTTGATTGCTGGAATAAAGCATGTGGAAATGACCCAAACATAA Target sites
Provided by authors
Predicted by miRanda
DRVs
SNPs
DRVs & SNPs
|
||||||||||||||||||||
miRNA-target interactions (Predicted by miRanda) |
|
||||||||||||||||||||
DRVs in gene 3'UTRs | |||||||||||||||||||||
SNPs in gene 3'UTRs |
Experimental Support 1 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Article |
- Li Z; Hassan MQ; Jafferji M; Aqeilan RI; et al. - The Journal of biological chemistry, 2009
Bone tissue arises from mesenchymal cells induced into the osteoblast lineage by essential transcription factors and signaling cascades. MicroRNAs regulate biological processes by binding to mRNA 3'-untranslated region (UTR) sequences to attenuate protein synthesis. Here we performed microRNA profiling and identified miRs that are up-regulated through stages of osteoblast differentiation. Among these are the miR-29, miR-let-7, and miR-26 families that target many collagens and extracellular matrix proteins. We find that miR-29b supports osteoblast differentiation through several mechanisms. miR-29b decreased and anti-miR-29b increased activity of COL1A1, COL5A3, and COL4A2 3'-UTR sequences in reporter assays, as well as endogenous gene expression. These results support a mechanism for regulating collagen protein accumulation during the mineralization stage when miR-29b reaches peak levels. We propose that this mechanism prevents fibrosis and facilitates mineral deposition. Our studies further demonstrate that miR-29b promotes osteogenesis by directly down-regulating known inhibitors of osteoblast differentiation, HDAC4, TGFbeta3, ACVR2A, CTNNBIP1, and DUSP2 proteins through binding to target 3'-UTR sequences in their mRNAs. Thus, miR-29b is a key regulator of development of the osteoblast phenotype by targeting anti-osteogenic factors and modulating bone extracellular matrix proteins.
LinkOut: [PMID: 19342382]
|
Experimental Support 2 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | LX-2 |
Disease | MIMAT0000100; |
Location of target site | 3'UTR |
Tools used in this research | TargetScan |
Original Description (Extracted from the article) |
...
"As a result
... - Ogawa T; Iizuka M; Sekiya Y; Yoshizato K; et al., 2010, Biochemical and biophysical research communications. |
Article |
- Ogawa T; Iizuka M; Sekiya Y; Yoshizato K; et al. - Biochemical and biophysical research communications, 2010
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression through imperfect base pairing with the 3' untranslated region (3'UTR) of target mRNA. We studied the regulation of alpha 1 (I) collagen (Col1A1) expression by miRNAs in human stellate cells, which are involved in liver fibrogenesis. Among miR-29b, -143, and -218, whose expressions were altered in response to transforming growth factor-beta1 or interferon-alpha stimulation, miR-29b was the most effective suppressor of type I collagen at the mRNA and protein level via its direct binding to Col1A1 3'UTR. miR-29b also had an effect on SP1 expression. These results suggested that miR-29b is involved in the regulation of type I collagen expression by interferon-alpha in hepatic stellate cells. It is anticipated that miR-29b will be used for the regulation of stellate cell activation and lead to antifibrotic therapy.
LinkOut: [PMID: 19913496]
|
Experimental Support 3 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | PC3 , DU145 |
Disease | prostate cancer |
Location of target site | 3'UTR |
Tools used in this research | TargetScan |
Original Description (Extracted from the article) |
...
Collagens are directly targeted by miR-29b
... - Steele R; Mott JL; Ray RB, 2010, Genes & cancer. |
Article |
- Steele R; Mott JL; Ray RB - Genes & cancer, 2010
c-myc promoter binding protein (MBP-1) is a multi-functional protein known to regulate expression of targets involved in the malignant phenotype. We have previously demonstrated that exogenous expression of MBP-1 inhibits prostate tumor growth, although the mechanism of growth inhibition is not well understood. We hypothesized that MBP-1 may modulate microRNA (miRNA) expression for regulation of prostate cancer cell growth. In this study, we demonstrated that exogenous MBP-1 upregulates miR-29b by 5-9 fold in prostate cancer cells as measured by real-time quantitative reverse transcription-PCR. Subsequent studies indicated that exogenous expression of miR-29b inhibited Mcl-1, COL1A1, and COL4A1. Further, a novel target with potential implications for invasion and metastasis, matrix metallopeptidase-2 (MMP-2), was identified and confirmed to be a miR-29b target in prostate cancer cells. Together our results demonstrated that exogenous expression of miR-29b regulates prostate cancer cell growth by modulating anti-apoptotic and pro-metastatic matrix molecules, implicating therapeutic potential of miR-29b for prostate cancer inhibition.
LinkOut: [PMID: 20657750]
|
Experimental Support 4 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Article |
- Castoldi G; Di Gioia CR; Bombardi C; et al. - Journal of cellular physiology, 2012
MicroRNAs play an important role in myocardial diseases. MiR-133a regulates cardiac hypertrophy, while miR-29b is involved in cardiac fibrosis. The aim of this study was to evaluate whether miR-133a and miR-29b play a role in myocardial fibrosis caused by Angiotensin II (Ang II)-dependent hypertension. Sprague-Dawley rats were treated for 4 weeks with Ang II (200 ng/kg/min) or Ang II + irbesartan (50 mg/kg/day in drinking water), or saline by osmotic minipumps. At the end of the experimental period, cardiac miR-133a and miR-29b expression was measured by real-time PCR, and myocardial fibrosis was evaluated by morphometric analysis. A computer-based prediction algorithm led to the identification of collagen 1a1 (Col1A1) as a putative target of miR-133a. A reporter plasmid bearing the 3'-untranslated regions (UTRs) of Col1A1 mRNA was constructed and luciferase assay was performed. MiR-133a suppressed the activity of luciferase when the reporter gene was linked to a 3'-UTR segment of Col1A1 (P < 0.01). Mutation of miR-133a binding sites in the 3'-UTR of Col1A1 mRNA abolished miR-133a-mediated repression of reporter gene activity, showing that Col1A1 is a real target of miR-133a. In vivo, Ang II caused an increase in systolic blood pressure (P < 0.0001, tail cuff) and myocardial fibrosis in presence of a decrease in miR-133a (P < 0.01) and miR-29b (P < 0.01), and an increase in Col1A1 expression (P < 0.01). These effects were abolished by Ang II administration + irbesartan. These data demonstrate a relationship between miR-133a and Col1A1, suggesting that myocardial fibrosis occurring in Ang II-dependent hypertension is regulated by the down-regulation of miR-133a and miR-29b through the modulation of Col1A1 expression.
LinkOut: [PMID: 21769867]
|
Experimental Support 5 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | CAKI-2 , 786-O , ACHN , caki-2 |
Location of target site | 3'UTR |
Tools used in this research | TargetScan |
Original Description (Extracted from the article) |
...
we found that the p85 regulatory subunit of PI3K harbors a binding site for miR-29b at positions 331 to 337 of its 3'UTR.
... - Li N; Cui J; Duan X; Chen H; Fan F, 2012, Investigative ophthalmology & visual science. |
Article |
- Li N; Cui J; Duan X; Chen H; Fan F - Investigative ophthalmology & visual science, 2012
PURPOSE: To evaluate the expression profile of microRNAs (miRNAs) and their roles in human Tenon's fibroblasts (HTFs), and to establish an miRNA-based gene-silencing method for antifibrosis in vitro. METHODS: The miRNA expression profile was analyzed by microarray using quiescent and transforming growth factor beta 1 (TGFbeta1)-stimulated primary HTFs, respectively. Candidate miRNAs were identified by quantitative RT-PCR. miRNAs potentially targeting fibrosis-related genes were predicted using a published algorithm. Predicted fibrosis-related genes regulated by candidate miRNAs were confirmed by transfection of the miRNA into HTF culture (with or without TGFbeta1 treatment), followed by quantitative RT-PCR and Western blot analysis. RESULTS: In all, 38 miRNAs were identified to be upregulated and 31 downregulated, in TGFbeta1-stimulated HTFs. Among those, the miR-29b, downregulated in TGFbeta1-treated HTFs, targeted a cadre of mRNAs that encode proteins involved in fibrosis, including PI3Kp85alpha, Sp1, and collagen type I alpha1 (Col1A1). Treatment of HTFs with TGFbeta1 activated the PI3K/Akt/Sp1 pathway and, consequently, induced an increase in the expression of type I collagen. Overexpression of miR-29b inhibited the PI3K/Akt/Sp1 pathway, and attenuated the expression of Col1A1. CONCLUSIONS. miR-29b acted as a suppressor of type I collagen gene by repressing the PI3K/Akt/Sp1 pathway in HTFs. Overexpression of miR-29b protected subconjunctival tissues against collagen production and fibrosis. These findings provided a novel rationale for the development of miRNA-based strategies for attenuating scar formation after glaucoma filtering surgery.
LinkOut: [PMID: 22297492]
|
Experimental Support 6 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | Primary human dermal fibroblasts |
Location of target site | 3'UTR |
Tools used in this research | PicTar , TargetScanS |
Original Description (Extracted from the article) |
...
miR-29b mimics significantly inhibited the luciferase activities derived from the reporter vectors carrying collagen subunits 1a1 and 1a2 39UTRs as compared with control
... - Cheng J; Wang Y; Wang D; Wu Y, 2013, The American journal of the medical sciences. |
Article |
- Cheng J; Wang Y; Wang D; Wu Y - The American journal of the medical sciences, 2013
BACKGROUND: Excessive collagen synthesis and deposit during skin wound healing results in scar formation. MicroRNAs (miRNAs) are endogenous noncoding RNA regulators that mediate diverse biological functions through repressing target genes and hold great potentials for clinical therapeutic applications. The aim of the present study was to identify miRNAs as post-transcriptional regulators of collagen 1 in skin fibroblasts. METHODS: miRNA candidates that potentially target collagen 1 were predicted by computational algorithms PicTar and TargetScan. The expression changes of collagen subunits 1alpha1 and 1alpha2 were measured by real-time reverse transcription-polymerase chain reaction and western blot after the primary skin fibroblasts were transfected with miR-29b mimics or inhibitor, respectively. A luciferase reporter assay was performed to further determine whether both collagen 1 subunits were probably direct targets of miR-29b. RESULTS: Computational predictions identified several miRNAs as possible regulators for collagen 1 synthesis, including miR-29b. Enforced overexpression of miR-29b resulted in remarkable decrease of collagen 1alpha1 and 1alpha2, whereas knockdown of endogenous miR-29b induced pronounced increase of collagen 1alpha1 and 1alpha2 at both the messenger RNA and the protein levels. The luciferase activities were significantly inhibited when cells were cotransfected with reporter constructs and miR-29 mimics in vitro. Moreover, miR-29b transcriptional abundance inversely related to the levels of both collagen 1 subunits in skin scar as compared with normal skin. CONCLUSIONS: Our data indicate that miR-29b is a potent post-transcriptional repressor of collagen 1 in skin fibroblasts and its deregulation might be implicated in scar formation, suggesting that miR-29b might represent a potential therapeutic target for scar reduction.
LinkOut: [PMID: 23221517]
|
Experimental Support 7 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | hMSCs |
Disease | MIMAT0000100 |
Location of target site | 3'UTR |
Tools used in this research | PicTar |
Original Description (Extracted from the article) |
...
"Transfecting cells with the LMWP/miR-29b complex showed that ectopic miR-29b in human MSCs signi茂卢聛cantly repressed the luciferase activity of reporter plasmids carrying the COL1A1 and COL5A3
... - Suh JS; Lee JY; Choi YS; Chung CP; Park YJ, 2013, Biomaterials. |
Article |
- Suh JS; Lee JY; Choi YS; Chung CP; Park YJ - Biomaterials, 2013
Stem cell differentiation is modulated by several key molecules, including cytokines, hormones, and engineered peptides. Emerging evidence suggests that microRNA has potential applications in stem cell engineering, such as in osteoblastic differentiation. MicroRNAs (miRNAs) bind to the 3'-untranslated region (UTR) sequence of target mRNA, thereby attenuating protein synthesis. Our goal was to evaluate the delivery of miRNA, i.e., miRNA-29b, to stem cells to promote osteoblastic differentiation because this miRNA is known to target anti-osteogenic factors gene expression. Despite the important role of miRNAs, their application has been limited due to poor cell/tissue penetration. The authors attempted to overcome this limitation by using a cell-penetrating peptide (CPP) carrier. Herein, the arginine-rich CPP, called the lowmolecular weight protamine (LMWP), is the sequence from natural protamine. We worked out the difficult problem to transfect into hMSCs by the complex with LMWP, and then we investigated synthetic double-stranded miR-29b could be induced osteoblast differentiation.
LinkOut: [PMID: 23478036]
|
Experimental Support 8 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | T4-2 |
Disease | 1277.0 |
Location of target site | 3'UTR |
Original Description (Extracted from the article) |
...
"Quantitative RTPCR demonstrated that miR-29b and -29c mimics also inhibited the expression of the ECM network genes that contain miR- 29芒鈧鈥渂inding sites in the 3'UTR region (Fig. 4E)
... - Zhu J; Xiong G; Fu H; Evers BM; Zhou BP; Xu R, 2015, Cancer research. |
Article |
- Zhu J; Xiong G; Fu H; Evers BM; Zhou BP; Xu R - Cancer research, 2015
The extracellular matrix (ECM) is a determining factor in the tumor microenvironment that restrains or promotes malignant growth. In this report, we show how the molecular chaperone protein Hsp47 functions as a nodal hub in regulating an ECM gene transcription network. A transcription network analysis showed that Hsp47 expression was activated during breast cancer development and progression. Hsp47 silencing reprogrammed human breast cancer cells to form growth-arrested and/or noninvasive structures in 3D cultures, and to limit tumor growth in xenograft assays by reducing deposition of collagen and fibronectin. Coexpression network analysis also showed that levels of microRNA(miR)-29b and -29c were inversely correlated with expression of Hsp47 and ECM network genes in human breast cancer tissues. We found that miR-29 repressed expression of Hsp47 along with multiple ECM network genes. Ectopic expression of miR-29b suppressed malignant phenotypes of breast cancer cells in 3D culture. Clinically, increased expression of Hsp47 and reduced levels of miR-29b and -29c were associated with poor survival outcomes in breast cancer patients. Our results show that Hsp47 is regulated by miR-29 during breast cancer development and progression, and that increased Hsp47 expression promotes cancer progression in part by enhancing deposition of ECM proteins.
LinkOut: [PMID: 25744716]
|
Experimental Support 9 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | MSC , TDSC |
Location of target site | 3'UTR |
Original Description (Extracted from the article) |
...
"However
... - Lu YF; Liu Y; Fu WM; Xu J; Wang B; Sun YX; et al., 2017, FASEB journal : official publication of the Federation of American Societies for Experimental Biology. |
Article |
- Lu YF; Liu Y; Fu WM; Xu J; Wang B; Sun YX; et al. - FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2017
Tendon injures are common orthopedic conditions, but tendon development and the pathogenesis of tendon injures, such as tendinopathy, remain largely unknown and have limited the development of clinical therapy. Studies on tenogenic differentiation at the molecular level may help in developing novel therapeutic strategies. As novel regulators, long noncoding RNAs (lncRNAs) have been found to have widespread biological functions, and emerging evidence demonstrates that lncRNAs may play important regulatory roles in cell differentiation and tissue regeneration. In this study, we found that lncRNA H19 stimulated tenogenesis of human tendon-derived stem cells. Stable overexpression of H19 significantly accelerated TGF-beta1-induced tenogenic differentiation in vitro and accelerated tendon healing in a mouse tendon defect model. H19 directly targeted miR-29b-3p, which is considered to be a negative regulator of tenogenesis. Furthermore, miR-29b-3p directly suppressed the expression of TGF-beta1 and type I collagen, thereby forming a novel regulatory feedback loop between H19 and TGF-beta1 to mediate tenogenic differentiation. Our study demonstrated that H19 promotes tenogenic differentiation both in vitro and in vivo by targeting miR-29b-3p and activating TGF-beta1 signaling. Regulation of the TGF-beta1/H19/miR-29b-3p regulatory loop may be a new strategy for treating tendon injury.-Lu, Y.-F., Liu, Y., Fu, W.-M., Xu, J., Wang, B., Sun, Y.-X., Wu, T.-Y., Xu, L.-L, Chan, K.-M., Zhang, J.-F., Li, G. Long noncoding RNA H19 accelerates tenogenic differentiation and promotes tendon healing through targeting miR-29b-3p and activating TGF-beta1 signaling.
LinkOut: [PMID: 27895107]
|
MiRNA-Target Expression Profile | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
MiRNA-Target Expression Profile (TCGA) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
ID | Target | Description | Validation methods | |||||||||
Strong evidence | Less strong evidence | |||||||||||
MIRT000095 | TGFB3 | transforming growth factor beta 3 | 2 | 1 | ||||||||
MIRT000096 | HDAC4 | histone deacetylase 4 | 4 | 4 | ||||||||
MIRT000097 | CTNNBIP1 | catenin beta interacting protein 1 | 4 | 4 | ||||||||
MIRT000098 | COL5A3 | collagen type V alpha 3 chain | 2 | 2 | ||||||||
MIRT000099 | COL4A2 | collagen type IV alpha 2 chain | 2 | 2 | ||||||||
MIRT000100 | COL1A1 | collagen type I alpha 1 chain | 8 | 8 | ||||||||
MIRT000101 | ACVR2A | activin A receptor type 2A | 1 | 1 | ||||||||
MIRT000445 | SP1 | Sp1 transcription factor | 5 | 6 | ||||||||
MIRT000684 | CDK6 | cyclin dependent kinase 6 | 6 | 5 | ||||||||
MIRT000930 | BACE1 | beta-secretase 1 | 3 | 1 | ||||||||
MIRT002310 | SFPQ | splicing factor proline and glutamine rich | 3 | 1 | ||||||||
MIRT002316 | DNAJB11 | DnaJ heat shock protein family (Hsp40) member B11 | 3 | 1 | ||||||||
MIRT003026 | DNMT3B | DNA methyltransferase 3 beta | 4 | 7 | ||||||||
MIRT003029 | DNMT3A | DNA methyltransferase 3 alpha | 5 | 9 | ||||||||
MIRT003287 | MCL1 | MCL1, BCL2 family apoptosis regulator | 7 | 20 | ||||||||
MIRT003290 | BCL2 | BCL2, apoptosis regulator | 4 | 3 | ||||||||
MIRT003661 | DNMT1 | DNA methyltransferase 1 | 4 | 2 | ||||||||
MIRT003736 | S100B | S100 calcium binding protein B | 3 | 1 | ||||||||
MIRT003813 | VEGFA | vascular endothelial growth factor A | 9 | 9 | ||||||||
MIRT004308 | ESR1 | estrogen receptor 1 | 2 | 1 | ||||||||
MIRT004312 | NCOA3 | nuclear receptor coactivator 3 | 2 | 1 | ||||||||
MIRT004419 | TET1 | tet methylcytosine dioxygenase 1 | 4 | 2 | ||||||||
MIRT004510 | TCL1A | T-cell leukemia/lymphoma 1A | 5 | 4 | ||||||||
MIRT005381 | Mmp15 | matrix metallopeptidase 15 | 3 | 1 | ||||||||
MIRT005383 | MMP15 | matrix metallopeptidase 15 | 2 | 1 | ||||||||
MIRT005385 | MMP24 | matrix metallopeptidase 24 | 4 | 2 | ||||||||
MIRT005387 | Mmp24 | matrix metallopeptidase 24 | 2 | 1 | ||||||||
MIRT005486 | GRN | granulin precursor | 4 | 1 | ||||||||
MIRT005522 | FGG | fibrinogen gamma chain | 2 | 1 | ||||||||
MIRT005533 | FGA | fibrinogen alpha chain | 2 | 1 | ||||||||
MIRT005534 | FGB | fibrinogen beta chain | 2 | 1 | ||||||||
MIRT005567 | COL3A1 | collagen type III alpha 1 chain | 5 | 4 | ||||||||
MIRT005568 | COL4A1 | collagen type IV alpha 1 chain | 7 | 9 | ||||||||
MIRT005570 | MMP2 | matrix metallopeptidase 2 | 5 | 8 | ||||||||
MIRT005614 | BBC3 | BCL2 binding component 3 | 2 | 2 | ||||||||
MIRT005667 | ADAM12 | ADAM metallopeptidase domain 12 | 5 | 3 | ||||||||
MIRT005669 | NID1 | nidogen 1 | 4 | 1 | ||||||||
MIRT006054 | HMGA2 | high mobility group AT-hook 2 | 3 | 1 | ||||||||
MIRT006058 | TGFB2 | transforming growth factor beta 2 | 3 | 2 | ||||||||
MIRT006059 | TGFB1 | transforming growth factor beta 1 | 2 | 1 | ||||||||
MIRT006060 | BMP1 | bone morphogenetic protein 1 | 3 | 2 | ||||||||
MIRT006098 | PTEN | phosphatase and tensin homolog | 7 | 3 | ||||||||
MIRT006251 | NASP | nuclear autoantigenic sperm protein | 2 | 1 | ||||||||
MIRT006486 | PPP1R13B | protein phosphatase 1 regulatory subunit 13B | 2 | 1 | ||||||||
MIRT006488 | CDC42 | cell division cycle 42 | 4 | 2 | ||||||||
MIRT006753 | GSK3B | glycogen synthase kinase 3 beta | 1 | 1 | ||||||||
MIRT006815 | PIK3CG | phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma | 3 | 1 | ||||||||
MIRT006915 | NKIRAS2 | NFKB inhibitor interacting Ras like 2 | 5 | 3 | ||||||||
MIRT007011 | RAX | retina and anterior neural fold homeobox | 2 | 1 | ||||||||
MIRT007033 | TBX21 | T-box 21 | 1 | 1 | ||||||||
MIRT007034 | IFNG | interferon gamma | 1 | 1 | ||||||||
MIRT007102 | DUSP2 | dual specificity phosphatase 2 | 3 | 3 | ||||||||
MIRT007254 | FOS | Fos proto-oncogene, AP-1 transcription factor subunit | 3 | 3 | ||||||||
MIRT027237 | PIK3R1 | phosphoinositide-3-kinase regulatory subunit 1 | 2 | 2 | ||||||||
MIRT027238 | IMPDH1 | inosine monophosphate dehydrogenase 1 | 2 | 2 | ||||||||
MIRT027239 | MYCN | MYCN proto-oncogene, bHLH transcription factor | 3 | 3 | ||||||||
MIRT048359 | SCAF8 | SR-related CTD associated factor 8 | 1 | 1 | ||||||||
MIRT048360 | CLDN1 | claudin 1 | 1 | 1 | ||||||||
MIRT048361 | MRPS35 | mitochondrial ribosomal protein S35 | 1 | 1 | ||||||||
MIRT048362 | RSL24D1 | ribosomal L24 domain containing 1 | 1 | 1 | ||||||||
MIRT048363 | LRP10 | LDL receptor related protein 10 | 1 | 1 | ||||||||
MIRT048364 | HP1BP3 | heterochromatin protein 1 binding protein 3 | 1 | 1 | ||||||||
MIRT048365 | B4GALT5 | beta-1,4-galactosyltransferase 5 | 1 | 1 | ||||||||
MIRT048366 | KIAA1671 | KIAA1671 | 1 | 1 | ||||||||
MIRT048367 | NNT | nicotinamide nucleotide transhydrogenase | 1 | 1 | ||||||||
MIRT048368 | IFIH1 | interferon induced with helicase C domain 1 | 1 | 1 | ||||||||
MIRT048369 | TPT1 | tumor protein, translationally-controlled 1 | 1 | 1 | ||||||||
MIRT048370 | RUNDC3B | RUN domain containing 3B | 1 | 1 | ||||||||
MIRT048371 | CECR2 | CECR2, histone acetyl-lysine reader | 1 | 1 | ||||||||
MIRT048372 | TPD52L2 | tumor protein D52 like 2 | 1 | 1 | ||||||||
MIRT048373 | NUS1 | NUS1 dehydrodolichyl diphosphate synthase subunit | 1 | 1 | ||||||||
MIRT048374 | CIT | citron rho-interacting serine/threonine kinase | 1 | 1 | ||||||||
MIRT048375 | GNB2L1 | receptor for activated C kinase 1 | 1 | 1 | ||||||||
MIRT048376 | SMARCC1 | SWI/SNF related, matrix associated, actin dependent regulator of chromatin subfamily c member 1 | 1 | 1 | ||||||||
MIRT048377 | PRKAA1 | protein kinase AMP-activated catalytic subunit alpha 1 | 1 | 1 | ||||||||
MIRT048378 | PIGN | phosphatidylinositol glycan anchor biosynthesis class N | 1 | 1 | ||||||||
MIRT048379 | RPS4X | ribosomal protein S4, X-linked | 1 | 1 | ||||||||
MIRT048380 | CCSAP | centriole, cilia and spindle associated protein | 1 | 1 | ||||||||
MIRT048381 | CALU | calumenin | 1 | 1 | ||||||||
MIRT048382 | NREP | neuronal regeneration related protein | 1 | 1 | ||||||||
MIRT048383 | MKI67 | marker of proliferation Ki-67 | 1 | 1 | ||||||||
MIRT053293 | TDG | thymine DNA glycosylase | 5 | 5 | ||||||||
MIRT053581 | CCND2 | cyclin D2 | 5 | 3 | ||||||||
MIRT053738 | COL4A5 | collagen type IV alpha 5 chain | 1 | 1 | ||||||||
MIRT053739 | COL7A1 | collagen type VII alpha 1 chain | 1 | 1 | ||||||||
MIRT053740 | COL15A1 | collagen type XV alpha 1 chain | 1 | 1 | ||||||||
MIRT053741 | COL2A1 | collagen type II alpha 1 chain | 1 | 1 | ||||||||
MIRT053742 | COL4A6 | collagen type IV alpha 6 chain | 1 | 1 | ||||||||
MIRT053743 | CSGALNACT2 | chondroitin sulfate N-acetylgalactosaminyltransferase 2 | 1 | 1 | ||||||||
MIRT053744 | SOX12 | SRY-box 12 | 1 | 1 | ||||||||
MIRT053745 | MAP2K6 | mitogen-activated protein kinase kinase 6 | 1 | 1 | ||||||||
MIRT053746 | TGIF2 | TGFB induced factor homeobox 2 | 1 | 1 | ||||||||
MIRT053747 | SERPINH1 | serpin family H member 1 | 2 | 2 | ||||||||
MIRT053748 | NOTCH2 | notch 2 | 4 | 1 | ||||||||
MIRT053749 | PPARD | peroxisome proliferator activated receptor delta | 1 | 1 | ||||||||
MIRT054045 | SNAI3 | snail family transcriptional repressor 3 | 2 | 1 | ||||||||
MIRT054192 | AKT2 | AKT serine/threonine kinase 2 | 4 | 2 | ||||||||
MIRT054574 | PER1 | period circadian clock 1 | 3 | 1 | ||||||||
MIRT060983 | LAMC1 | laminin subunit gamma 1 | 3 | 1 | ||||||||
MIRT061662 | BTG2 | BTG anti-proliferation factor 2 | 2 | 4 | ||||||||
MIRT067385 | TMTC3 | transmembrane and tetratricopeptide repeat containing 3 | 2 | 4 | ||||||||
MIRT079942 | RNF138 | ring finger protein 138 | 2 | 2 | ||||||||
MIRT080798 | SH3GLB1 | SH3 domain containing GRB2 like, endophilin B1 | 2 | 4 | ||||||||
MIRT081893 | KCTD15 | potassium channel tetramerization domain containing 15 | 2 | 8 | ||||||||
MIRT082515 | CALM3 | calmodulin 3 | 2 | 2 | ||||||||
MIRT085293 | CCNT2 | cyclin T2 | 2 | 6 | ||||||||
MIRT102856 | INSIG1 | insulin induced gene 1 | 2 | 2 | ||||||||
MIRT207249 | TET3 | tet methylcytosine dioxygenase 3 | 2 | 2 | ||||||||
MIRT207755 | VHL | von Hippel-Lindau tumor suppressor | 2 | 4 | ||||||||
MIRT210969 | TET2 | tet methylcytosine dioxygenase 2 | 1 | 1 | ||||||||
MIRT211650 | ABCE1 | ATP binding cassette subfamily E member 1 | 2 | 2 | ||||||||
MIRT213230 | REST | RE1 silencing transcription factor | 2 | 10 | ||||||||
MIRT225103 | GOLGA7 | golgin A7 | 2 | 2 | ||||||||
MIRT250481 | MAZ | MYC associated zinc finger protein | 2 | 2 | ||||||||
MIRT264266 | FAM102B | family with sequence similarity 102 member B | 2 | 2 | ||||||||
MIRT267090 | ZFP91 | ZFP91 zinc finger protein | 2 | 2 | ||||||||
MIRT303363 | MXD1 | MAX dimerization protein 1 | 2 | 1 | ||||||||
MIRT316344 | ULBP2 | UL16 binding protein 2 | 2 | 2 | ||||||||
MIRT401476 | AIM1 | crystallin beta-gamma domain containing 1 | 2 | 1 | ||||||||
MIRT437369 | LAMC2 | laminin subunit gamma 2 | 3 | 1 | ||||||||
MIRT437372 | ITGA6 | integrin subunit alpha 6 | 3 | 2 | ||||||||
MIRT437552 | COL5A2 | collagen type V alpha 2 chain | 1 | 1 | ||||||||
MIRT437553 | COL10A1 | collagen type X alpha 1 chain | 1 | 1 | ||||||||
MIRT437554 | SPARC | secreted protein acidic and cysteine rich | 1 | 1 | ||||||||
MIRT437555 | FBN1 | fibrillin 1 | 1 | 1 | ||||||||
MIRT437556 | LOX | lysyl oxidase | 2 | 2 | ||||||||
MIRT437557 | PDGFRB | platelet derived growth factor receptor beta | 2 | 2 | ||||||||
MIRT437710 | PHACTR2 | phosphatase and actin regulator 2 | 2 | 1 | ||||||||
MIRT437713 | TUBB2A | tubulin beta 2A class IIa | 2 | 1 | ||||||||
MIRT437716 | EMP1 | epithelial membrane protein 1 | 2 | 1 | ||||||||
MIRT437719 | SNX24 | sorting nexin 24 | 2 | 1 | ||||||||
MIRT437722 | AMFR | autocrine motility factor receptor | 2 | 1 | ||||||||
MIRT437725 | RIOK3 | RIO kinase 3 | 2 | 1 | ||||||||
MIRT437728 | WDR26 | WD repeat domain 26 | 4 | 3 | ||||||||
MIRT437731 | DSC2 | desmocollin 2 | 2 | 1 | ||||||||
MIRT437870 | IL32 | interleukin 32 | 1 | 1 | ||||||||
MIRT438911 | GATA3 | GATA binding protein 3 | 2 | 1 | ||||||||
MIRT438912 | PDGFRA | platelet derived growth factor receptor alpha | 2 | 1 | ||||||||
MIRT438913 | PDGFC | platelet derived growth factor C | 2 | 1 | ||||||||
MIRT438914 | PDGFB | platelet derived growth factor subunit B | 2 | 1 | ||||||||
MIRT438915 | PDGFA | platelet derived growth factor subunit A | 2 | 1 | ||||||||
MIRT438916 | MMP9 | matrix metallopeptidase 9 | 2 | 1 | ||||||||
MIRT438917 | LOXL4 | lysyl oxidase like 4 | 2 | 1 | ||||||||
MIRT438918 | LOXL2 | lysyl oxidase like 2 | 2 | 1 | ||||||||
MIRT438919 | ITGB1 | integrin subunit beta 1 | 2 | 1 | ||||||||
MIRT438920 | ANGPTL4 | angiopoietin like 4 | 2 | 1 | ||||||||
MIRT454812 | NEDD9 | neural precursor cell expressed, developmentally down-regulated 9 | 2 | 2 | ||||||||
MIRT456827 | MORF4L2 | mortality factor 4 like 2 | 2 | 8 | ||||||||
MIRT462151 | RPL22 | ribosomal protein L22 | 2 | 2 | ||||||||
MIRT465314 | TRAM2 | translocation associated membrane protein 2 | 2 | 2 | ||||||||
MIRT467808 | SLC2A14 | solute carrier family 2 member 14 | 2 | 2 | ||||||||
MIRT467829 | SLC29A2 | solute carrier family 29 member 2 | 2 | 2 | ||||||||
MIRT467971 | SLC16A1 | solute carrier family 16 member 1 | 2 | 4 | ||||||||
MIRT468225 | SGK1 | serum/glucocorticoid regulated kinase 1 | 2 | 2 | ||||||||
MIRT469448 | REL | REL proto-oncogene, NF-kB subunit | 2 | 2 | ||||||||
MIRT469723 | RAB40C | RAB40C, member RAS oncogene family | 2 | 2 | ||||||||
MIRT469841 | R3HDM4 | R3H domain containing 4 | 2 | 2 | ||||||||
MIRT472643 | NAA40 | N(alpha)-acetyltransferase 40, NatD catalytic subunit | 2 | 2 | ||||||||
MIRT474209 | LEPRE1 | prolyl 3-hydroxylase 1 | 1 | 1 | ||||||||
MIRT474576 | KLHDC3 | kelch domain containing 3 | 2 | 2 | ||||||||
MIRT475837 | HDGF | heparin binding growth factor | 2 | 4 | ||||||||
MIRT476721 | FRK | fyn related Src family tyrosine kinase | 2 | 4 | ||||||||
MIRT477473 | ELMSAN1 | ELM2 and Myb/SANT domain containing 1 | 2 | 2 | ||||||||
MIRT478668 | CTC1 | CST telomere replication complex component 1 | 2 | 14 | ||||||||
MIRT478710 | CSRNP2 | cysteine and serine rich nuclear protein 2 | 2 | 2 | ||||||||
MIRT478985 | COMMD2 | COMM domain containing 2 | 2 | 2 | ||||||||
MIRT479826 | CCNA2 | cyclin A2 | 2 | 8 | ||||||||
MIRT479901 | CCDC117 | coiled-coil domain containing 117 | 2 | 2 | ||||||||
MIRT480066 | CAND1 | cullin associated and neddylation dissociated 1 | 2 | 2 | ||||||||
MIRT482012 | AMER1 | APC membrane recruitment protein 1 | 2 | 8 | ||||||||
MIRT489024 | C1QTNF6 | C1q and TNF related 6 | 5 | 2 | ||||||||
MIRT492513 | RAET1L | retinoic acid early transcript 1L | 2 | 2 | ||||||||
MIRT493825 | FSCN1 | fascin actin-bundling protein 1 | 2 | 2 | ||||||||
MIRT495936 | SLC7A5P2 | solute carrier family 7 member 5 pseudogene 2 | 2 | 2 | ||||||||
MIRT496358 | PPY | pancreatic polypeptide | 2 | 2 | ||||||||
MIRT496662 | TMEM237 | transmembrane protein 237 | 2 | 2 | ||||||||
MIRT497644 | GLDN | gliomedin | 2 | 2 | ||||||||
MIRT501878 | MORF4L1 | mortality factor 4 like 1 | 2 | 8 | ||||||||
MIRT502932 | CDC42SE1 | CDC42 small effector 1 | 2 | 4 | ||||||||
MIRT506750 | LDOC1L | retrotransposon Gag like 6 | 2 | 6 | ||||||||
MIRT507168 | GAS2L3 | growth arrest specific 2 like 3 | 2 | 2 | ||||||||
MIRT514918 | MDM2 | MDM2 proto-oncogene | 2 | 6 | ||||||||
MIRT523962 | DYNLT1 | dynein light chain Tctex-type 1 | 2 | 4 | ||||||||
MIRT527675 | CASP8 | caspase 8 | 2 | 2 | ||||||||
MIRT536936 | HECW1 | HECT, C2 and WW domain containing E3 ubiquitin protein ligase 1 | 2 | 2 | ||||||||
MIRT537359 | FJX1 | four jointed box 1 | 2 | 2 | ||||||||
MIRT537687 | ENPP2 | ectonucleotide pyrophosphatase/phosphodiesterase 2 | 2 | 2 | ||||||||
MIRT538124 | DDX6 | DEAD-box helicase 6 | 2 | 2 | ||||||||
MIRT538813 | C21orf91 | chromosome 21 open reading frame 91 | 2 | 2 | ||||||||
MIRT546938 | PTP4A1 | protein tyrosine phosphatase type IVA, member 1 | 2 | 2 | ||||||||
MIRT547104 | PLAG1 | PLAG1 zinc finger | 2 | 2 | ||||||||
MIRT547823 | ISG20L2 | interferon stimulated exonuclease gene 20 like 2 | 2 | 2 | ||||||||
MIRT548237 | FEM1B | fem-1 homolog B | 2 | 2 | ||||||||
MIRT550036 | WWTR1 | WW domain containing transcription regulator 1 | 2 | 2 | ||||||||
MIRT552619 | ZBTB5 | zinc finger and BTB domain containing 5 | 2 | 2 | ||||||||
MIRT556562 | LIMS1 | LIM zinc finger domain containing 1 | 2 | 2 | ||||||||
MIRT558857 | CDC23 | cell division cycle 23 | 2 | 2 | ||||||||
MIRT565485 | SPRTN | SprT-like N-terminal domain | 2 | 2 | ||||||||
MIRT568205 | CBX6 | chromobox 6 | 2 | 2 | ||||||||
MIRT576774 | Tmem127 | transmembrane protein 127 | 2 | 2 | ||||||||
MIRT576958 | Pigs | phosphatidylinositol glycan anchor biosynthesis, class S | 2 | 3 | ||||||||
MIRT610003 | PIGS | phosphatidylinositol glycan anchor biosynthesis class S | 2 | 3 | ||||||||
MIRT616511 | COX7A2L | cytochrome c oxidase subunit 7A2 like | 2 | 2 | ||||||||
MIRT640887 | ENTPD1 | ectonucleoside triphosphate diphosphohydrolase 1 | 2 | 2 | ||||||||
MIRT641350 | RAB11FIP1 | RAB11 family interacting protein 1 | 2 | 2 | ||||||||
MIRT642978 | TESPA1 | thymocyte expressed, positive selection associated 1 | 2 | 2 | ||||||||
MIRT643634 | YY2 | YY2 transcription factor | 2 | 2 | ||||||||
MIRT644386 | ZNF286A | zinc finger protein 286A | 2 | 2 | ||||||||
MIRT650749 | YAE1D1 | Yae1 domain containing 1 | 2 | 2 | ||||||||
MIRT661585 | EPHX2 | epoxide hydrolase 2 | 2 | 2 | ||||||||
MIRT664287 | RNMTL1 | mitochondrial rRNA methyltransferase 3 | 2 | 2 | ||||||||
MIRT689393 | ZNF850 | zinc finger protein 850 | 2 | 2 | ||||||||
MIRT693815 | SEC31A | SEC31 homolog A, COPII coat complex component | 2 | 2 | ||||||||
MIRT694532 | TRIM72 | tripartite motif containing 72 | 2 | 2 | ||||||||
MIRT694628 | ZFPM1 | zinc finger protein, FOG family member 1 | 2 | 2 | ||||||||
MIRT695135 | PRY2 | PTPN13-like, Y-linked 2 | 2 | 2 | ||||||||
MIRT695152 | PRY | PTPN13-like, Y-linked | 2 | 2 | ||||||||
MIRT703640 | FBRS | fibrosin | 2 | 2 | ||||||||
MIRT704551 | CNBP | CCHC-type zinc finger nucleic acid binding protein | 2 | 2 | ||||||||
MIRT704967 | CBX2 | chromobox 2 | 2 | 2 | ||||||||
MIRT705497 | ASXL2 | additional sex combs like 2, transcriptional regulator | 2 | 2 | ||||||||
MIRT707993 | OTUD4 | OTU deubiquitinase 4 | 2 | 2 | ||||||||
MIRT708741 | FAM71F2 | family with sequence similarity 71 member F2 | 2 | 2 | ||||||||
MIRT710621 | COLEC10 | collectin subfamily member 10 | 2 | 2 | ||||||||
MIRT713056 | IFRD1 | interferon related developmental regulator 1 | 2 | 2 | ||||||||
MIRT715515 | MAPKBP1 | mitogen-activated protein kinase binding protein 1 | 2 | 2 | ||||||||
MIRT720770 | FAM193A | family with sequence similarity 193 member A | 2 | 2 | ||||||||
MIRT731925 | AQP4 | aquaporin 4 | 3 | 1 | ||||||||
MIRT732673 | HMGB1 | high mobility group box 1 | 3 | 0 | ||||||||
MIRT734350 | IL6 | interleukin 6 | 1 | 0 | ||||||||
MIRT734351 | TP53 | tumor protein p53 | 1 | 0 | ||||||||
MIRT734565 | BCL2L11 | BCL2 like 11 | 2 | 0 | ||||||||
MIRT734770 | TRIM44 | tripartite motif containing 44 | 2 | 0 | ||||||||
MIRT734771 | CCNE1 | cyclin E1 | 2 | 0 | ||||||||
MIRT735260 | STAT3 | signal transducer and activator of transcription 3 | 6 | 1 | ||||||||
MIRT735414 | HBP1 | HMG-box transcription factor 1 | 3 | 0 | ||||||||
MIRT735537 | HIF3A | hypoxia inducible factor 3 alpha subunit | 3 | 0 | ||||||||
MIRT735639 | HUWE1 | HECT, UBA and WWE domain containing 1, E3 ubiquitin protein ligase | 3 | 0 | ||||||||
MIRT735641 | AKT3 | AKT serine/threonine kinase 3 | 3 | 0 | ||||||||
MIRT735943 | DNM3OS | DNM3 opposite strand/antisense RNA | 4 | 0 | ||||||||
MIRT737493 | SMAD3 | SMAD family member 3 | 1 | 0 | ||||||||
MIRT737577 | SNAI1 | snail family transcriptional repressor 1 | 2 | 0 | ||||||||
MIRT755941 | SLMAP | sarcolemma associated protein | 4 | 1 | ||||||||
MIRT755963 | ROBO1 | roundabout guidance receptor 1 | 5 | 1 | ||||||||
MIRT755964 | SRGAP2 | SLIT-ROBO Rho GTPase activating protein 2 | 5 | 1 | ||||||||
MIRT756271 | YWHAE | tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon | 3 | 1 | ||||||||
MIRT756364 | LIN7A | lin-7 homolog A, crumbs cell polarity complex component | 2 | 1 | ||||||||
MIRT756474 | COL5A1 | collagen type V alpha 1 chain | 3 | 1 |
miRNA-Drug Associations | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
miRNA-Drug Resistance Associations | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|