pre-miRNA Information | |
---|---|
pre-miRNA | hsa-mir-101-1 |
Genomic Coordinates | chr1: 65058434 - 65058508 |
Description | Homo sapiens miR-101-1 stem-loop |
Comment | Reference . |
RNA Secondary Structure | |
Associated Diseases | |
pre-miRNA | hsa-mir-101-2 |
Genomic Coordinates | chr9: 4850297 - 4850375 |
Description | Homo sapiens miR-101-2 stem-loop |
Comment | Reference . |
RNA Secondary Structure | |
Associated Diseases |
Mature miRNA Information | |||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mature miRNA | hsa-miR-101-3p | ||||||||||||||||||||||||||||
Sequence | 47| UACAGUACUGUGAUAACUGAA |67 | ||||||||||||||||||||||||||||
Evidence | Experimental | ||||||||||||||||||||||||||||
Experiments | Cloned | ||||||||||||||||||||||||||||
Editing Events in miRNAs |
|
||||||||||||||||||||||||||||
SNPs in miRNA |
|
||||||||||||||||||||||||||||
Putative Targets |
miRNA Expression profile | |
---|---|
Human miRNA Tissue Atlas | |
miRNAs in Extracellular Vesicles |
|
Circulating MicroRNA Expression Profiling |
Biomarker Information |
|
---|
Gene Information | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gene Symbol | EZH2 | ||||||||||||||||||||
Synonyms | ENX-1, ENX1, EZH2b, KMT6, KMT6A, WVS, WVS2 | ||||||||||||||||||||
Description | enhancer of zeste 2 polycomb repressive complex 2 subunit | ||||||||||||||||||||
Transcript | NM_004456 | ||||||||||||||||||||
Other Transcripts | NM_152998 | ||||||||||||||||||||
Expression | |||||||||||||||||||||
Putative miRNA Targets on EZH2 | |||||||||||||||||||||
3'UTR of EZH2 (miRNA target sites are highlighted) |
>EZH2|NM_004456|3'UTR 1 CATCTGCTACCTCCTCCCCCCTCCTCTGAAACAGCTGCCTTAGCTTCAGGAACCTCGAGTACTGTGGGCAATTTAGAAAA 81 AGAACATGCAGTTTGAAATTCTGAATTTGCAAAGTACTGTAAGAATAATTTATAGTAATGAGTTTAAAAATCAACTTTTT 161 ATTGCCTTCTCACCAGCTGCAAAGTGTTTTGTACCAGTGAATTTTTGCAATAATGCAGTATGGTACATTTTTCAACTTTG 241 AATAAAGAATACTTGAACTTGTCCTTGTTGAATC Target sites
Provided by authors
Predicted by miRanda
DRVs
SNPs
DRVs & SNPs
|
||||||||||||||||||||
miRNA-target interactions (Predicted by miRanda) |
|
||||||||||||||||||||
DRVs in gene 3'UTRs | |||||||||||||||||||||
SNPs in gene 3'UTRs |
Experimental Support 1 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | HeLa |
Location of target site | 3'UTR |
Original Description (Extracted from the article) |
...
Experimental Support for Predicted Targets.//{These MTI shown in Fig. 3}
... - Lewis BP; Shih IH; Jones-Rhoades MW; Bartel et al., 2003, Cell. |
Article |
- Lewis BP; Shih IH; Jones-Rhoades MW; Bartel et al. - Cell, 2003
MicroRNAs (miRNAs) can play important gene regulatory roles in nematodes, insects, and plants by basepairing to mRNAs to specify posttranscriptional repression of these messages. However, the mRNAs regulated by vertebrate miRNAs are all unknown. Here we predict more than 400 regulatory target genes for the conserved vertebrate miRNAs by identifying mRNAs with conserved pairing to the 5' region of the miRNA and evaluating the number and quality of these complementary sites. Rigorous tests using shuffled miRNA controls supported a majority of these predictions, with the fraction of false positives estimated at 31% for targets identified in human, mouse, and rat and 22% for targets identified in pufferfish as well as mammals. Eleven predicted targets (out of 15 tested) were supported experimentally using a HeLa cell reporter system. The predicted regulatory targets of mammalian miRNAs were enriched for genes involved in transcriptional regulation but also encompassed an unexpectedly broad range of other functions.
LinkOut: [PMID: 14697198]
|
Experimental Support 2 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | SK-BR-3 , DU 145 , HME , HN16N2 |
Location of target site | 3'UTR |
Tools used in this research | MicroInspector , miRanda , PicTar , TargetScan |
Original Description (Extracted from the article) |
...
"miR-101 regulation of the 3'UTR of EZH2.//Overexpression of miR-101
... - Varambally S; Cao Q; Mani RS; Shankar S; et al., 2008, Science (New York, N.Y.). |
Article |
- Varambally S; Cao Q; Mani RS; Shankar S; et al. - Science (New York, N.Y.), 2008
Enhancer of zeste homolog 2 (EZH2) is a mammalian histone methyltransferase that contributes to the epigenetic silencing of target genes and regulates the survival and metastasis of cancer cells. EZH2 is overexpressed in aggressive solid tumors by mechanisms that remain unclear. Here we show that the expression and function of EZH2 in cancer cell lines are inhibited by microRNA-101 (miR-101). Analysis of human prostate tumors revealed that miR-101 expression decreases during cancer progression, paralleling an increase in EZH2 expression. One or both of the two genomic loci encoding miR-101 were somatically lost in 37.5% of clinically localized prostate cancer cells (6 of 16) and 66.7% of metastatic disease cells (22 of 33). We propose that the genomic loss of miR-101 in cancer leads to overexpression of EZH2 and concomitant dysregulation of epigenetic pathways, resulting in cancer progression.
LinkOut: [PMID: 19008416]
|
Experimental Support 3 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Article |
- Fletcher AM; Heaford AC; Trask DK - Translational oncology, 2008
The presence of cervical lymph node metastases in head and neck squamous cell carcinoma (HNSCC) is the strongest determinant of patient prognosis. Owing to the impact of nodal metastases on patient survival, a system for sensitive and accurate detection is required. Clinical staging of lymph nodes is far less accurate than pathological staging. Pathological staging also suffers limitations because it fails to detect micrometastasis in a subset of nodal specimens. To improve the sensitivity of existing means of diagnosing metastatic disease, many advocate the use of molecular markers specific for HNSCC cells. MicroRNA (miRNA) are short noncoding segments of RNA that posttranscriptionally regulate gene expression. Approximately one third of all miRNA will exhibit substantial tissue specificity. Using a quantitative reverse transcription-polymerase chain reaction-based assay, we examined the expression of microRNA-205 (mir-205) across tissues and demonstrated that its expression is highly specific for squamous epithelium. We applied this assay to tissue samples, and we could detect metastatic HNSCC in each positive lymph node specimen, whereas benign specimens did not express this marker. When compared to metastases from other primary tumors, HNSCC-positive lymph nodes were distinguishable by the high expression of this marker. Using an in vitro lymphoid tissue model, we were able to detect as little as one squamous cell in a background of 1 million lymphocytes. By combining the sensitivity of quantitative reverse transcription-polymerase chain reaction with the specificity of mir-205 for squamous epithelium, we demonstrate a novel molecular marker for the detection of metastatic HNSCC.
LinkOut: [PMID: 19043531]
|
Experimental Support 4 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | T24 , UM-UC-3 , TCCSUP |
Location of target site | 3'UTR |
Tools used in this research | TargetScan |
Article |
- Friedman JM; Liang G; Liu CC; Wolff EM; et al. - Cancer research, 2009
The Polycomb Repressive Complex 2 (PRC2) mediates epigenetic gene silencing by trimethylating histone H3 lysine 27 (H3K27me3) and is known to aberrantly silence tumor suppressor genes in cancer. EZH2, the catalytic subunit of PRC2, enhances tumorigenesis and is commonly overexpressed in several types of cancer. Our microRNA profiling of bladder transitional cell carcinoma (TCC) patient samples revealed that microRNA-101 (miR-101) is down-regulated in TCC, and we showed that miR-101 inhibits cell proliferation and colony formation in TCC cell lines. Furthermore, our results confirm that miR-101 directly represses EZH2 and stable EZH2 knockdowns in TCC cell lines create a similar growth suppressive phenotype. This suggests that abnormal down-regulation of miR-101 could lead to the overexpression of EZH2 frequently seen in cancer. We conclude that miR-101 may be a potent tumor suppressor by altering global chromatin structure through repression of EZH2.
LinkOut: [PMID: 19258506]
|
Experimental Support 5 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Article |
- Friedman JM; Jones PA; Liang G - Cell cycle (Georgetown, Tex.), 2009
|
Experimental Support 6 for Non-Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | xx |
Validation Method |
|
Conditions | C2C12 |
Disease | MIMAT0000099 |
Location of target site | 3'UTR |
Tools used in this research | microRNA.org , miRBase Target Database , RNAhybrid , TargetScan |
Original Description (Extracted from the article) |
...
"Total RNA was isolated from C2C12 cells using Trizol Reagent (Invitrogen). The expression of miR-199a-5p
... - Juan AH; Kumar RM; Marx JG; Young RA; Sartorelli V, 2009, Molecular cell. |
Article |
- Juan AH; Kumar RM; Marx JG; Young RA; Sartorelli V - Molecular cell, 2009
Polycomb group (PcG) proteins exert essential functions in the most disparate biological processes. The contribution of PcG proteins to cell commitment and differentiation relates to their ability to repress transcription of developmental regulators in embryonic stem (ES) cells and in committed cell lineages, including skeletal muscle cells (SMC). PcG proteins are preferentially removed from transcribed regions, but the underlying mechanisms remain unclear. Here, PcG proteins are found to occupy and repress transcription from an intronic region containing the microRNA miR-214 in undifferentiated SMC. Differentiation coincides with PcG disengagement, recruitment of the developmental regulators MyoD and myogenin, and activation of miR-214 transcription. Once transcribed, miR-214 negatively feeds back on PcG by targeting the Ezh2 3'UTR, the catalytic subunit of the PRC2 complex. miR-214-mediated Ezh2 protein reduction accelerates SMC differentiation and promotes unscheduled transcription of developmental regulators in ES cells. Thus, miR-214 and Ezh2 establish a regulatory loop controlling PcG-dependent gene expression during differentiation.
LinkOut: [PMID: 19818710]
|
Experimental Support 7 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | LNCaP , DU-145 , PC-3 |
Disease | 2146.0; |
Location of target site | 3'UTR |
Tools used in this research | miRanda , PicTar , TargetScan |
Original Description (Extracted from the article) |
...
"In our reporter assays
... - Cao P; Deng Z; Wan M; Huang W; Cramer SD; et al., 2010, Molecular cancer. |
Article |
- Cao P; Deng Z; Wan M; Huang W; Cramer SD; et al. - Molecular cancer, 2010
BACKGROUND: In prostate cancer (PCa), the common treatment involving androgen ablation alleviates the disease temporarily, but results in the recurrence of highly aggressive and androgen-independent metastatic cancer. Therefore, more effective therapeutic approaches are needed. It is known that aberrant epigenetics contributes to prostate malignancy. Unlike genetic changes, these epigenetic alterations are reversible, which makes them attractive targets in PCa therapy to impede cancer progression. As a histone methyltransferase, Ezh2 plays an essential role in epigenetic regulation. Since Ezh2 is overexpressed and acts as an oncogene in PCa, it has been proposed as a bona fide target of PCa therapy. MicroRNAs (miRNAs) regulate gene expression through modulating protein translation. Recently, the contribution of miRNAs in cancer development is increasingly appreciated. In this report, we present our study showing that microRNA-101 (miR-101) inhibits Ezh2 expression and differentially regulates prostate cancer cells. In addition, the expression of miR-101 alters upon androgen treatment and HIF-1alpha/HIF-1beta induction. RESULT: In our reporter assays, both miR-101 and miR-26a inhibit the expression of a reporter construct containing the 3'-UTR of Ezh2. When ectopically expressed in PC-3, DU145 and LNCaP cells, miR-101 inhibits endogenous Ezh2 expression in all three cell lines, while miR-26a only decreases Ezh2 in DU145. Ectopic miR-101 reduces the invasion ability of PC-3 cells, while restored Ezh2 expression rescues the invasiveness of PC-3 cells. Similarly, miR-101 also inhibits cell invasion and migration of DU145 and LNCaP cells, respectively. Interestingly, ectopic miR-101 exhibits differential effects on the proliferation of PC-3, DU-145 and LNCaP cells and also causes morphological changes of LNCaP cells. In addition, the expression of miR-101 is regulated by androgen receptor and HIF-1alpha/HIF-1beta. While HIF-1alpha/HIF-1beta induced by deferoxamine mesylate (DFO) decreases miR-101 levels, the overall effects of R-1881 on miR-101 expression are stimulatory. CONCLUSIONS: This study indicates that miR-101 targets Ezh2 and decreases the invasiveness of PCa cells, suggesting that miR-101 introduction is a potential therapeutic strategy to combat PCa. MiR-101 differentially regulates prostate cell proliferation. Meanwhile, the expression of miR-101 is also modulated at different physiological conditions, such as androgen stimulation and HIF-1alpha/HIF-1beta induction.
LinkOut: [PMID: 20478051]
|
Experimental Support 8 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | BGC-823 , MKN-45 , SGC-7901 |
Original Description (Extracted from the article) |
...
"miR-101 inhibits expression of EZH2
... - Wang HJ; Ruan HJ; He XJ; Ma YY; Jiang XT; et al., 2010, European journal of cancer (Oxford, England : 1990). |
Article |
- Wang HJ; Ruan HJ; He XJ; Ma YY; Jiang XT; et al. - European journal of cancer (Oxford, England : 1990), 2010
MicroRNAs (miRNAs) are short non-coding RNA molecules playing regulatory roles by repressing translation or cleaving RNA transcripts. Dysregulated expression of miRNAs is associated with several diseases, including cancer. In this study, we report that the expression of microRNA-101 (miR-101) is down-regulated in gastric cancer tissues and cells, and ectopic expression of miR-101 significantly inhibits cellular proliferation, migration and invasion of gastric cancer cells by targeting EZH2, Cox-2, Mcl-1 and Fos. Our animal study also indicates that miR-101 could potentially suppress tumour growth in vivo. Collectively, these results suggest that miR-101 may function as a tumour suppressor in gastric cancer, as it has an inhibitory role not only in cellular proliferation, migration and invasion in vitro, but also in tumour growth in vivo.
LinkOut: [PMID: 20712078]
|
Experimental Support 9 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | C666-1 |
Location of target site | 3'UTR |
Tools used in this research | miRanda , PicTar , TargetScan |
Original Description (Extracted from the article) |
...
"Our data are the 茂卢聛rst to document that EZH2 expression could serve as a potential prognostic marker for NPC
... - Alajez NM; Shi W; Hui AB; Bruce J; et al., 2010, Cell death & disease. |
Article |
- Alajez NM; Shi W; Hui AB; Bruce J; et al. - Cell death & disease, 2010
There is increasing evidence supporting the role of members of the polycomb group (PcG) gene family in tumor development and progression. However, their precise role in tumorigenesis and mechanisms of their regulation remain to be elucidated. Using nasopharyngeal carcinoma (NPC) as a disease model, a comprehensive analysis was undertaken on the clinical significance of EZH2 expression, identification of the cellular processes regulated by EZH2, and the mechanisms of its deregulated expression. Herein, we report EZH2 as being associated with a higher risk of relapse in NPC patients (P = 0.002). Genome-wide microarray and bioinformatics identified several vital cellular processes (such as differentiation, development, and apoptosis) to be regulated by EZH2, corroborated by in vitro lethality, and delayed tumor formation in vivo upon EZH2 depletion. The combination of global microRNA (miR) profiling in primary NPC specimens, and in silico analyses provided several candidate miRs that could regulate EZH2. Using a luciferase-based assay, miR-26a, miR-101, and miR-98 were validated as bona fide regulators of EZH2 expression. In particular, miR-98 was underexpressed in relapsed patient samples, strongly suggesting an important role for the miR-98 and EZH2 axis in NPC biology.
LinkOut: [PMID: 21368858]
|
Experimental Support 10 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | PANC-1 , PK8 , PK9 , PK-59 , KLM-1 , MIA Paca2 , PK-45P |
Disease | 2146.0 |
Location of target site | 3'UTR |
Original Description (Extracted from the article) |
...
"MiR-101 targets EZH2 at the posttranscriptional level
... - Nakahara O; Takamori H; Iwatsuki M; Baba Y; et al., 2012, Annals of surgical oncology. |
Article |
- Nakahara O; Takamori H; Iwatsuki M; Baba Y; et al. - Annals of surgical oncology, 2012
BACKGROUND: The mechanisms of IPMN carcinogenesis are as yet unclear. This study aimed to determine whether expression of EZH2 promotes neoplastic progression of IPMN and PDCA, and to elucidate regulation of EZH2 expression by miR-101. METHODS: EZH2 mRNA and protein expression were investigated in 8 human pancreatic cancer cell lines by PCR and western blotting. Pre-miR-101 and anti-miR-101 were transfected into pancreatic cancer cells to elucidate EZH2 regulation by miR-101. To evaluate whether EZH2 modulates malignant progression of IPMN, EZH2 expression in IPMN was examined by immunohistochemistry. Next, we collected malignant and benign cells from FFPE samples of IPMNs using laser capture microdissection and extracted the RNA. miR-101 expression in IPMN was assessed using real-time PCR. RESULTS: All pancreatic cancer cell lines expressed EZH2 mRNA and protein. The induction of miR-101 by transfection of pre-miR-101 in MIA PaCa-2 was closely related to a reduction in EZH2 protein production compared with control, whereas there was little difference in the expression of EZH2 mRNA. Anti-miR-101 transfected pancreatic cancer cells showed an increase in EZH2 protein, while the level of EZH2 mRNA was not elevated. Immunohistochemistry revealed that the expression of EZH2 was significantly higher in malignant than benign IPMN. Expression of miR-101 was significantly lower in malignant IPMN than benign IPMN. CONCLUSIONS: MiR-101 targets EZH2 at the posttranscriptional level, and loss of miR-101 could be a trigger for the adenomacarcinoma sequence of IPMN by upregulation of EZH2. This study suggests miR-101-EZH2 blockade as a potential therapeutic target in IPMN carcinogenesis.
LinkOut: [PMID: 21932133]
|
Experimental Support 11 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | NCI-N87 , AGS , SNU638 , GP202 , KATOIII , IPA220 , MKN45 , SNU1 |
Disease | 2146.0 |
Tools used in this research | unspecified |
Original Description (Extracted from the article) |
...
"deletions and /or microdeletions at both miR-101 genomic loci cause mature miR-101 downregulation
... - Carvalho J; van Grieken NC; Pereira PM; et al., 2012, The Journal of pathology. |
Article |
- Carvalho J; van Grieken NC; Pereira PM; et al. - The Journal of pathology, 2012
E-cadherin expression disruption is commonly observed in metastatic epithelial cancers and is a crucial step in gastric cancer (GC) initiation and progression. As aberrant expression of microRNAs often perturb the normal expression/function of pivotal cancer-related genes, we characterized and dissected a pathway that causes E-cadherin dysfunction via loss of microRNA-101 and up-regulation of EZH2 expression in GC. MicroRNA microarray expression profiling and array-CGH were used to reinforce miR-101 involvement in GC. By using quantitative real-time PCR and quantitative SNaPshot genomic PCR, we confirmed that miR-101 was significantly down-regulated in GC (p < 0.0089) in comparison with normal gastric mucosas and, at least in 65% of the GC cases analysed, this down-regulation was caused by deletions and/or microdeletions at miR-101 genomic loci. Moreover, around 40% of cases showing miR-101 down-regulation displayed concomitant EZH2 over-expression (at the RNA and protein levels), which, in turn, was associated with loss/aberrant expression of E-cadherin. Interestingly, this occurred preferentially in intestinal-type GCs, retaining allele(s) untargeted by classical CDH1-inactivating mechanisms. We also demonstrated that miR-101 gain of function or direct inhibition of EZH2 in Kato III GC cells led to a strong depletion of endogenous EZH2 and consequent rescue of E-cadherin membranous localization, mimicking results obtained in clinical GC samples. In conclusion, we show that deletions and/or microdeletions at both miR-101 genomic loci cause mature miR-101 down-regulation, subsequent EZH2 over-expression and E-cadherin dysfunction, specifically in intestinal-type GC.
LinkOut: [PMID: 22450781]
|
Experimental Support 12 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | HDF |
Disease | MIMAT0000099 |
Tools used in this research | TargetScan , PicTar , miRanda , PITA , ELMMo , RNA22 , DIANA-microT , GenMir++ |
Original Description (Extracted from the article) |
...
"(B) Protein samples for the indicated time points were collected as described (left panel). Protein levels were determined for Ezh2 by standard Western blot analysis. Experiments were performed in triplicates
... - Greussing R; Hackl M; Charoentong P; Pauck et al., 2013, BMC genomics. |
Article |
- Greussing R; Hackl M; Charoentong P; Pauck et al. - BMC genomics, 2013
BACKGROUND: Cellular senescence can be induced by a variety of extrinsic stimuli, and sustained exposure to sunlight is a key factor in photoaging of the skin. Accordingly, irradiation of skin fibroblasts by UVB light triggers cellular senescence, which is thought to contribute to extrinsic skin aging, although molecular mechanisms are incompletely understood. Here, we addressed molecular mechanisms underlying UVB induced senescence of human diploid fibroblasts. RESULTS: We observed a parallel activation of the p53/p21(WAF1) and p16(INK4a)/pRb pathways. Using genome-wide transcriptome analysis, we identified a transcriptional signature of UVB-induced senescence that was conserved in three independent strains of human diploid fibroblasts (HDF) from skin. In parallel, a comprehensive screen for microRNAs regulated during UVB-induced senescence was performed which identified five microRNAs that are significantly regulated during the process. Bioinformatic analysis of miRNA-mRNA networks was performed to identify new functional mRNA targets with high confidence for miR-15a, miR-20a, miR-20b, miR-93, and miR-101. Already known targets of these miRNAs were identified in each case, validating the approach. Several new targets were identified for all of these miRNAs, with the potential to provide new insight in the process of UVB-induced senescence at a genome-wide level. Subsequent analysis was focused on miR-101 and its putative target gene Ezh2. We confirmed that Ezh2 is regulated by miR-101 in human fibroblasts, and found that both overexpression of miR-101 and downregulation of Ezh2 independently induce senescence in the absence of UVB irradiation. However, the downregulation of miR-101 was not sufficient to block the phenotype of UVB-induced senescence, suggesting that other UVB-induced processes induce the senescence response in a pathway redundant with upregulation of miR-101. CONCLUSION: We performed a comprehensive screen for UVB-regulated microRNAs in human diploid fibroblasts, and identified a network of miRNA-mRNA interactions mediating UVB-induced senescence. In addition, miR-101 and Ezh2 were identified as key players in UVB-induced senescence of HDF.
LinkOut: [PMID: 23557329]
|
Experimental Support 13 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | Melanoma cell lines |
Location of target site | 3'UTR |
Tools used in this research | TargetScan |
Original Description (Extracted from the article) |
...
MiR-101 inhibits melanoma cell invasion and proliferation by targeting MITF and EZH2
... - Luo C; Merz PR; Chen Y; Dickes E; Pscherer et al., 2013, Cancer letters. |
Article |
- Luo C; Merz PR; Chen Y; Dickes E; Pscherer et al. - Cancer letters, 2013
The microRNA miR-101 has been reported to be a tumor suppressor. Here we show that low expression of miR-101 is associated with poor survival in stage IV melanoma patients. We identified microphthalmia-associated transcription factor (MITF) as a direct target of miR-101. In melanoma cells, overexpression of miR-101 downregulated protein levels of MITF and a previously reported target protein, enhancer of zeste homolog 2 (EZH2). Functional assays showed that miR-101 suppressed invasion and proliferation - an outcome that could be phenocopied by siRNA knockdown of MITF and EZH2. Our data suggest that miR-101 might have a beneficial role in melanoma.
LinkOut: [PMID: 23962556]
|
Experimental Support 14 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | HepG2 , Hep3B , SNU-182 , BEL-7402 , HuH7 , PLC/PRF5 , HepaRG |
Disease | hepatocellular carcinoma |
Location of target site | 3'UTR |
Original Description (Extracted from the article) |
...
EZH2 is a direct target gene of miR-101.
... - Travis AJ; Moody J; Helwak A; Tollervey D; Kudla G, 2014, Methods (San Diego, Calif.). |
Article |
- Travis AJ; Moody J; Helwak A; Tollervey D; Kudla G - Methods (San Diego, Calif.), 2014
Associations between proteins and RNA-RNA duplexes are important in post-transcriptional regulation of gene expression. The CLASH (Cross-linking, Ligation and Sequencing of Hybrids) technique captures RNA-RNA interactions by physically joining two RNA molecules associated with a protein complex into a single chimeric RNA molecule. These events are relatively rare and considerable effort is needed to detect a small number of chimeric sequences amongst millions of non-chimeric cDNA reads resulting from a CLASH experiment. We present the "hyb" bioinformatics pipeline, which we developed to analyse high-throughput cDNA sequencing data from CLASH experiments. Although primarily designed for use with AGO CLASH data, hyb can also be used for the detection and annotation of chimeric reads in other high-throughput sequencing datasets. We examined the sensitivity and specificity of chimera detection in a test dataset using the BLAST, BLAST+, BLAT, pBLAT and Bowtie2 read alignment programs. We obtained the most reliable results in the shortest time using a combination of preprocessing with Flexbar and subsequent read-mapping using Bowtie2. The "hyb" software is distributed under the GNU GPL (General Public License) and can be downloaded from https://github.com/gkudla/hyb.
LinkOut: [PMID: 24211736]
|
Experimental Support 15 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | HUVECs |
Tools used in this research | previous_study |
Original Description (Extracted from the article) |
...
"In line with the hypothesis that miR-101 directly targets EZH2 for inhibition in GDM-HUVECs
... - Floris I; Descamps B; Vardeu A; Mitic T; et al., 2015, Arteriosclerosis, thrombosis, and vascular biology. |
Article |
- Floris I; Descamps B; Vardeu A; Mitic T; et al. - Arteriosclerosis, thrombosis, and vascular biology, 2015
OBJECTIVE: Gestational diabetes mellitus (GDM) produces fetal hyperglycemia with increased lifelong risks for the exposed offspring of cardiovascular and other diseases. Epigenetic mechanisms induce long-term gene expression changes in response to in utero environmental perturbations. Moreover, microRNAs (miRs) control the function of endothelial cells (ECs) under physiological and pathological conditions and can target the epigenetic machinery. We investigated the functional and expressional effect of GDM on human fetal ECs of the umbilical cord vein (HUVECs). We focused on miR-101 and 1 of its targets, enhancer of zester homolog-2 (EZH2), which trimethylates the lysine 27 of histone 3, thus repressing gene transcription. EZH2 exists as isoforms alpha and beta. APPROACH AND RESULTS: HUVECs were prepared from GDM or healthy pregnancies and tested in apoptosis, migration, and Matrigel assays. GDM-HUVECs demonstrated decreased functional capacities, increased miR-101 expression, and reduced EZH2- beta and trimethylation of histone H3 on lysine 27 levels. MiR-101 inhibition increased EZH2 expression and improved GDM-HUVEC function. Healthy HUVECs were exposed to high or normal d-glucose concentration for 48 hours and then tested for miR-101 and EZH2 expression. Similar to GDM, high glucose increased miR-101 expression. Chromatin immunoprecipitation using an antibody for EZH2 followed by polymerase chain reaction analyses for miR-101 gene promoter regions showed that both GDM and high glucose concentration reduced EZH2 binding to the miR-101 locus in HUVECs. Moreover, EZH2-beta overexpression inhibited miR-101 promoter activity in HUVECs. CONCLUSIONS: GDM impairs HUVEC function via miR-101 upregulation. EZH2 is both a transcriptional inhibitor and a target gene of miR-101 in HUVECs, and it contributes to some of the miR-101-induced defects of GDM-HUVECs.
LinkOut: [PMID: 25614281]
|
Experimental Support 16 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | HepG2 , SMMC-7721 |
Disease | 2146.0 |
Location of target site | 3'UTR |
Original Description (Extracted from the article) |
...
"Our results showed ectopic miR-101 decreased EZH2 expression at both mRNA and protein level (Fig. 3A and B). vectors (Fig. 3C). Reporter gene assays showed that the luciferase activity was significantly decreased by ectopic miR-101 as compared with negative control while the mutation in the predicted target sites abolished the repressive effects of miR-101 on luciferase activity (Fig. 3D)
... - Huang D; Wang X; Zhuang C; Shi W; Liu M; Tu et al., 2016, Oncology reports. |
Article |
- Huang D; Wang X; Zhuang C; Shi W; Liu M; Tu et al. - Oncology reports, 2016
Although the tumor suppressive role of miR-101 is well documented in hepatocellular carcinoma (HCC), how the expression of miR-101 itself is regulated remains elusive. In the present study, we demonstrated that the miR-101 precursor pre-miR-101-1 could be regulated by an important epigenetic regulator, the enhancer of zeste homolog 2 (EZH2). Reporter gene assays revealed that ectopic expression of EZH2 inhibited the transcriptional activities of miR-101-1 promoter. Subsequent analyses revealed that miR-101-1 directly represses the expression of EZH2, and miR-101-1 and EZH2 form a reciprocal negative feedback loop as indicated by the fact that ectopic mature miR-101 could induce endogenous pre-miR-101-1 expression. This mature miR-101-induced pre-miR-101 expression was specific to pre-miR-101-1 and depended on EZH2 activities. Moreover, our results also demonstrated that similar antitumor effects can be achieved either by ectopic miR-101 or EZH2 silencing in HCC cells. These findings show that elevated EZH2 contributes to miR-101 deregulation in HCC and highlight the coordinated role of miR-101 and EZH2 in hepatocarcinogenesis.
LinkOut: [PMID: 26718325]
|
Experimental Support 17 for Non-Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | xx |
Validation Method |
|
Conditions | SGC7901 , HGC27 , BGC823 , MKN45 , MKN28 , AGS |
Disease | MIMAT0000099; gastric cancer |
Location of target site | 3'UTR |
Tools used in this research | RNAhybrid |
Original Description (Extracted from the article) |
...
"Polycomb group protein enhancer of zeste homolog 2 (EZH2)
... - Chen DL; Ju HQ; Lu YX; Chen LZ; Zeng ZL; et al., 2016, Journal of experimental & clinical cancer research : CR. |
Article |
- Chen DL; Ju HQ; Lu YX; Chen LZ; Zeng ZL; et al. - Journal of experimental & clinical cancer research : CR, 2016
BACKGROUND: Long non-coding RNAs (lncRNAs) have emerged as critical regulators of tumor progression. However, the role and molecular mechanism of lncRNA XIST in gastric cancer is still unknown. METHODS: Real-time PCR analysis was performed to measure the expression levels of lncRNA XIST in gastric cancer tissues and cell lines, the correlation between lncRNA XIST expression and clinicopathological characteristics and prognosis was analyzed in gastric cancer patients. The biological function of lncRNA XIST on gastric cancer cells were determined both in vitro and in vivo. The regulating relationship between lncRNA XIST and miR-101 was investigated in gastric cancer cells. RESULTS: lncRNA XIST was significantly up-regulated in gastric cancer tissues and cell lines. Overexpression of lncRNA XIST was markedly associated with larger tumor size, lymph node invasion, distant metastasis and TNM stage in gastric cancer patients. Functionally, knockdown of lncRNA XIST exerted tumor-suppressive effects by inhibiting cell proliferation, migration and invasion in vitro and tumor growth and metastasis in vivo. Furthermore, an inverse relationship between lncRNA XIST and miR-101 was found. Polycomb group protein enhancer of zeste homolog 2 (EZH2), a direct target of miR-101, could mediated the biological effects that lncRNA XIST exerted. CONCLUSIONS: lncRNA XIST is up-regulated and is associated with aggressive tumor phenotypes and patient survival in gastric cancer, and the newly identified lncRNA XIST/miR-101/EZH2 axis could be a potential biomarkers or therapeutic targets for gastric cancer patients.
LinkOut: [PMID: 27620004]
|
Experimental Support 18 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | SK-MES-1 |
Disease | lung squamous cell carcinoma |
Location of target site | 3'UTR |
Tools used in this research | previous_study |
Article |
- Hou Y; Li L; Ju Y; Lu Y; Chang L; Xiang X - Journal of cellular biochemistry, 2016
The aim of this study was to investigate the effects of miR-101-3p on the viability, migration, invasion, and mitosis of lung squamous carcinoma cells by inhibiting EZH2. In this study, RT-qPCR was used to detect the expression of miR-101-3p and EZH2 in both tissues and cells at RNA level. The dual luciferase reporter gene system was used to determine whether there was targeting relationship between miR-101-3p and EZH2-3'UTR. Western Blot was used to detect the expression of EZH2 as well as the proliferation and invasion related proteins. The CCK-8 assay, Transwell invasion assay, wound healing assay and flow cytometry were conducted to test the cell viability, invasion, migration and apoptosis. The results of RT-qPCR and Western blot showed that miR-101-3p was low-expressed and EZH2 was overexpressed in lung squamous cell carcinoma tissues and cells. Meanwhile the Western blot confirmed the effects of EZH2 expression on the proliferation and invasion of carcinoma cells. The results of luciferase assay and RT-qPCR showed that miR-101-3p had a negative regulation effect on EZH2. The CCK-8 assay, Transwell invasion assay, wound healing assay and flow cytometry results showed that the inhibition of EZH2 or the up-regulation of miR-101-3p inhibited the viability, migration, invasion and cell cycle but promoted cell apoptosis of lung squamous cell carcinoma. MiR-101-3p could inhibit the viability, migration, invasion, and cell cycle of lung squamous carcinoma cells by inhibiting the EZH2. J. Cell. Biochem. 9999: 1-8, 2017. (c) 2017 Wiley Periodicals, Inc.
LinkOut: [PMID: 27966775]
|
MiRNA-Target Expression Profile | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
MiRNA-Target Expression Profile (TCGA) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
ID | Target | Description | Validation methods | |||||||||
Strong evidence | Less strong evidence | |||||||||||
MIRT000378 | MYCN | MYCN proto-oncogene, bHLH transcription factor | 5 | 6 | ||||||||
MIRT000379 | ATXN1 | ataxin 1 | 5 | 2 | ||||||||
MIRT000381 | EZH2 | enhancer of zeste 2 polycomb repressive complex 2 subunit | 8 | 17 | ||||||||
MIRT000430 | APP | amyloid beta precursor protein | 6 | 4 | ||||||||
MIRT001219 | FOS | Fos proto-oncogene, AP-1 transcription factor subunit | 4 | 6 | ||||||||
MIRT002436 | ICOS | inducible T-cell costimulator | 1 | 1 | ||||||||
MIRT003921 | MCL1 | MCL1, BCL2 family apoptosis regulator | 6 | 7 | ||||||||
MIRT003965 | COX2 | cytochrome c oxidase subunit II | 4 | 2 | ||||||||
MIRT004012 | FBN2 | fibrillin 2 | 2 | 1 | ||||||||
MIRT004027 | ARID1A | AT-rich interaction domain 1A | 4 | 3 | ||||||||
MIRT004084 | SUZ12 | SUZ12 polycomb repressive complex 2 subunit | 2 | 1 | ||||||||
MIRT004086 | EED | embryonic ectoderm development | 2 | 1 | ||||||||
MIRT004297 | PTGS2 | prostaglandin-endoperoxide synthase 2 | 4 | 4 | ||||||||
MIRT005560 | ATM | ATM serine/threonine kinase | 3 | 1 | ||||||||
MIRT005602 | ATP5B | ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide | 4 | 1 | ||||||||
MIRT005876 | DUSP1 | dual specificity phosphatase 1 | 3 | 1 | ||||||||
MIRT006149 | STMN1 | stathmin 1 | 4 | 2 | ||||||||
MIRT006150 | RAB5A | RAB5A, member RAS oncogene family | 5 | 3 | ||||||||
MIRT006151 | ATG4D | autophagy related 4D cysteine peptidase | 4 | 1 | ||||||||
MIRT007091 | SOX9 | SRY-box 9 | 3 | 1 | ||||||||
MIRT007188 | DNMT3A | DNA methyltransferase 3 alpha | 3 | 1 | ||||||||
MIRT007375 | FMR1 | fragile X mental retardation 1 | 1 | 1 | ||||||||
MIRT027240 | PPP4R1 | protein phosphatase 4 regulatory subunit 1 | 1 | 1 | ||||||||
MIRT027241 | CERK | ceramide kinase | 1 | 1 | ||||||||
MIRT027242 | ANKFY1 | ankyrin repeat and FYVE domain containing 1 | 1 | 1 | ||||||||
MIRT027243 | GMEB2 | glucocorticoid modulatory element binding protein 2 | 1 | 1 | ||||||||
MIRT027244 | TGFBR3 | transforming growth factor beta receptor 3 | 2 | 3 | ||||||||
MIRT027245 | MRPL44 | mitochondrial ribosomal protein L44 | 1 | 1 | ||||||||
MIRT027246 | MKNK2 | MAP kinase interacting serine/threonine kinase 2 | 1 | 1 | ||||||||
MIRT027247 | UBE2B | ubiquitin conjugating enzyme E2 B | 1 | 1 | ||||||||
MIRT027248 | VEGFA | vascular endothelial growth factor A | 3 | 2 | ||||||||
MIRT027249 | CDC123 | cell division cycle 123 | 1 | 1 | ||||||||
MIRT027250 | TOR1AIP1 | torsin 1A interacting protein 1 | 1 | 1 | ||||||||
MIRT027251 | MSH2 | mutS homolog 2 | 1 | 1 | ||||||||
MIRT027252 | ZNF567 | zinc finger protein 567 | 1 | 1 | ||||||||
MIRT027253 | TMEM192 | transmembrane protein 192 | 2 | 4 | ||||||||
MIRT027254 | PRPF38B | pre-mRNA processing factor 38B | 1 | 1 | ||||||||
MIRT027255 | CDC7 | cell division cycle 7 | 1 | 1 | ||||||||
MIRT027256 | LYSMD3 | LysM domain containing 3 | 1 | 1 | ||||||||
MIRT027257 | RAB8B | RAB8B, member RAS oncogene family | 1 | 1 | ||||||||
MIRT027258 | PIP4K2A | phosphatidylinositol-5-phosphate 4-kinase type 2 alpha | 1 | 1 | ||||||||
MIRT027259 | KLHL23 | kelch like family member 23 | 1 | 1 | ||||||||
MIRT027260 | SLC7A2 | solute carrier family 7 member 2 | 2 | 4 | ||||||||
MIRT027261 | SLC38A2 | solute carrier family 38 member 2 | 2 | 5 | ||||||||
MIRT027262 | REEP5 | receptor accessory protein 5 | 1 | 1 | ||||||||
MIRT027263 | ZNF792 | zinc finger protein 792 | 1 | 1 | ||||||||
MIRT027264 | LIN7C | lin-7 homolog C, crumbs cell polarity complex component | 1 | 1 | ||||||||
MIRT027265 | MAP2K1 | mitogen-activated protein kinase kinase 1 | 1 | 1 | ||||||||
MIRT027266 | TMEM168 | transmembrane protein 168 | 1 | 1 | ||||||||
MIRT027267 | DIMT1 | DIM1 dimethyladenosine transferase 1 homolog | 1 | 1 | ||||||||
MIRT027268 | INA | internexin neuronal intermediate filament protein alpha | 1 | 1 | ||||||||
MIRT027269 | XIAP | X-linked inhibitor of apoptosis | 1 | 1 | ||||||||
MIRT027270 | NR2F2 | nuclear receptor subfamily 2 group F member 2 | 2 | 5 | ||||||||
MIRT027271 | KCNG3 | potassium voltage-gated channel modifier subfamily G member 3 | 1 | 1 | ||||||||
MIRT027272 | CCDC125 | coiled-coil domain containing 125 | 1 | 1 | ||||||||
MIRT027273 | RAB11FIP1 | RAB11 family interacting protein 1 | 1 | 1 | ||||||||
MIRT027274 | GFPT2 | glutamine-fructose-6-phosphate transaminase 2 | 1 | 1 | ||||||||
MIRT027275 | CHAMP1 | chromosome alignment maintaining phosphoprotein 1 | 1 | 1 | ||||||||
MIRT027276 | MNX1 | motor neuron and pancreas homeobox 1 | 2 | 4 | ||||||||
MIRT027277 | FRMD6 | FERM domain containing 6 | 1 | 1 | ||||||||
MIRT027278 | PLAG1 | PLAG1 zinc finger | 1 | 1 | ||||||||
MIRT027279 | AP3M1 | adaptor related protein complex 3 mu 1 subunit | 1 | 1 | ||||||||
MIRT027280 | MPPE1 | metallophosphoesterase 1 | 1 | 1 | ||||||||
MIRT027281 | MRPL42 | mitochondrial ribosomal protein L42 | 1 | 1 | ||||||||
MIRT027282 | RAC1 | Rac family small GTPase 1 | 2 | 10 | ||||||||
MIRT027283 | SREK1IP1 | SREK1 interacting protein 1 | 1 | 1 | ||||||||
MIRT027284 | OTUD4 | OTU deubiquitinase 4 | 1 | 1 | ||||||||
MIRT027285 | C10orf88 | chromosome 10 open reading frame 88 | 1 | 1 | ||||||||
MIRT027286 | KIAA1462 | junctional cadherin 5 associated | 2 | 3 | ||||||||
MIRT027287 | MORC3 | MORC family CW-type zinc finger 3 | 2 | 3 | ||||||||
MIRT027288 | TGIF2 | TGFB induced factor homeobox 2 | 1 | 1 | ||||||||
MIRT027289 | AKAP11 | A-kinase anchoring protein 11 | 1 | 1 | ||||||||
MIRT027290 | AP1S3 | adaptor related protein complex 1 sigma 3 subunit | 1 | 1 | ||||||||
MIRT027291 | STAMBP | STAM binding protein | 2 | 3 | ||||||||
MIRT027292 | UBE2D3 | ubiquitin conjugating enzyme E2 D3 | 1 | 1 | ||||||||
MIRT027293 | AP1G1 | adaptor related protein complex 1 gamma 1 subunit | 2 | 3 | ||||||||
MIRT027294 | KDM3B | lysine demethylase 3B | 1 | 1 | ||||||||
MIRT027295 | NUPL2 | nucleoporin like 2 | 1 | 1 | ||||||||
MIRT027296 | KDM6B | lysine demethylase 6B | 1 | 1 | ||||||||
MIRT027297 | MBNL2 | muscleblind like splicing regulator 2 | 1 | 1 | ||||||||
MIRT027298 | RANBP9 | RAN binding protein 9 | 1 | 1 | ||||||||
MIRT027299 | ICK | intestinal cell kinase | 1 | 1 | ||||||||
MIRT027300 | MTSS1L | MTSS1L, I-BAR domain containing | 1 | 1 | ||||||||
MIRT027301 | ZBTB21 | zinc finger and BTB domain containing 21 | 1 | 1 | ||||||||
MIRT027302 | ARID5B | AT-rich interaction domain 5B | 1 | 1 | ||||||||
MIRT027303 | ABHD17C | abhydrolase domain containing 17C | 1 | 1 | ||||||||
MIRT027304 | MRGBP | MRG domain binding protein | 1 | 1 | ||||||||
MIRT027305 | MOB4 | MOB family member 4, phocein | 2 | 2 | ||||||||
MIRT027306 | INO80D | INO80 complex subunit D | 2 | 4 | ||||||||
MIRT027307 | MEIS1 | Meis homeobox 1 | 1 | 1 | ||||||||
MIRT027308 | DCTD | dCMP deaminase | 1 | 1 | ||||||||
MIRT027309 | KCTD14 | potassium channel tetramerization domain containing 14 | 1 | 1 | ||||||||
MIRT027310 | BIRC5 | baculoviral IAP repeat containing 5 | 2 | 1 | ||||||||
MIRT027311 | ZCCHC2 | zinc finger CCHC-type containing 2 | 2 | 5 | ||||||||
MIRT027312 | RPS6KA5 | ribosomal protein S6 kinase A5 | 1 | 1 | ||||||||
MIRT027313 | ACVR2B | activin A receptor type 2B | 1 | 1 | ||||||||
MIRT027314 | MKLN1 | muskelin 1 | 1 | 1 | ||||||||
MIRT027315 | MBTD1 | mbt domain containing 1 | 1 | 1 | ||||||||
MIRT027316 | AMMECR1L | AMMECR1 like | 1 | 1 | ||||||||
MIRT027317 | KIF2C | kinesin family member 2C | 1 | 1 | ||||||||
MIRT027318 | JUN | Jun proto-oncogene, AP-1 transcription factor subunit | 1 | 1 | ||||||||
MIRT027319 | USP25 | ubiquitin specific peptidase 25 | 1 | 1 | ||||||||
MIRT027320 | RARS2 | arginyl-tRNA synthetase 2, mitochondrial | 1 | 1 | ||||||||
MIRT027321 | CD46 | CD46 molecule | 1 | 1 | ||||||||
MIRT027322 | NOP2 | NOP2 nucleolar protein | 1 | 1 | ||||||||
MIRT027323 | LTN1 | listerin E3 ubiquitin protein ligase 1 | 1 | 1 | ||||||||
MIRT027324 | FZD6 | frizzled class receptor 6 | 2 | 8 | ||||||||
MIRT027325 | VAPA | VAMP associated protein A | 1 | 1 | ||||||||
MIRT027326 | XPO7 | exportin 7 | 1 | 1 | ||||||||
MIRT027327 | BTG2 | BTG anti-proliferation factor 2 | 1 | 1 | ||||||||
MIRT027328 | MMS22L | MMS22 like, DNA repair protein | 1 | 1 | ||||||||
MIRT027329 | FOXP4 | forkhead box P4 | 1 | 1 | ||||||||
MIRT027330 | RPL7L1 | ribosomal protein L7 like 1 | 2 | 4 | ||||||||
MIRT027331 | SPATA2 | spermatogenesis associated 2 | 2 | 6 | ||||||||
MIRT027332 | FBXO11 | F-box protein 11 | 1 | 1 | ||||||||
MIRT027333 | RNF44 | ring finger protein 44 | 1 | 1 | ||||||||
MIRT027334 | E2F3 | E2F transcription factor 3 | 1 | 1 | ||||||||
MIRT027335 | LMNB1 | lamin B1 | 1 | 1 | ||||||||
MIRT027336 | TMTC3 | transmembrane and tetratricopeptide repeat containing 3 | 2 | 6 | ||||||||
MIRT027337 | HOXA9 | homeobox A9 | 1 | 1 | ||||||||
MIRT027338 | FAR1 | fatty acyl-CoA reductase 1 | 1 | 1 | ||||||||
MIRT027339 | GPAM | glycerol-3-phosphate acyltransferase, mitochondrial | 2 | 3 | ||||||||
MIRT027340 | ADO | 2-aminoethanethiol dioxygenase | 1 | 1 | ||||||||
MIRT027341 | RTN4 | reticulon 4 | 1 | 1 | ||||||||
MIRT027342 | ELAVL2 | ELAV like RNA binding protein 2 | 1 | 1 | ||||||||
MIRT027343 | CTR9 | CTR9 homolog, Paf1/RNA polymerase II complex component | 1 | 1 | ||||||||
MIRT027344 | CERS2 | ceramide synthase 2 | 1 | 1 | ||||||||
MIRT027345 | LZIC | leucine zipper and CTNNBIP1 domain containing | 2 | 2 | ||||||||
MIRT027346 | VEZT | vezatin, adherens junctions transmembrane protein | 1 | 1 | ||||||||
MIRT027347 | SMARCD1 | SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily d, member 1 | 1 | 1 | ||||||||
MIRT027348 | RIOK2 | RIO kinase 2 | 1 | 1 | ||||||||
MIRT027349 | CBX4 | chromobox 4 | 1 | 1 | ||||||||
MIRT027350 | SEPT11 | septin 11 | 1 | 1 | ||||||||
MIRT027351 | QSER1 | glutamine and serine rich 1 | 1 | 1 | ||||||||
MIRT027352 | MYO9A | myosin IXA | 1 | 1 | ||||||||
MIRT027353 | CAPN2 | calpain 2 | 1 | 1 | ||||||||
MIRT027354 | TFAP4 | transcription factor AP-4 | 2 | 4 | ||||||||
MIRT027355 | SSFA2 | sperm specific antigen 2 | 1 | 1 | ||||||||
MIRT027356 | TBC1D12 | TBC1 domain family member 12 | 1 | 1 | ||||||||
MIRT027357 | SPAG1 | sperm associated antigen 1 | 2 | 2 | ||||||||
MIRT027358 | ZNF800 | zinc finger protein 800 | 1 | 1 | ||||||||
MIRT027359 | C7orf60 | base methyltransferase of 25S rRNA 2 homolog | 1 | 1 | ||||||||
MIRT027360 | BLOC1S6 | biogenesis of lysosomal organelles complex 1 subunit 6 | 1 | 1 | ||||||||
MIRT027361 | SPIRE1 | spire type actin nucleation factor 1 | 1 | 1 | ||||||||
MIRT027362 | FRS2 | fibroblast growth factor receptor substrate 2 | 1 | 1 | ||||||||
MIRT027363 | TMEM170B | transmembrane protein 170B | 1 | 1 | ||||||||
MIRT027364 | AFF4 | AF4/FMR2 family member 4 | 1 | 1 | ||||||||
MIRT027365 | GNB1 | G protein subunit beta 1 | 2 | 3 | ||||||||
MIRT027366 | LBR | lamin B receptor | 1 | 1 | ||||||||
MIRT027367 | ZFX | zinc finger protein, X-linked | 2 | 5 | ||||||||
MIRT027368 | KLF12 | Kruppel like factor 12 | 1 | 1 | ||||||||
MIRT027369 | PHF3 | PHD finger protein 3 | 2 | 2 | ||||||||
MIRT027370 | C1orf52 | chromosome 1 open reading frame 52 | 1 | 1 | ||||||||
MIRT027371 | TSPAN12 | tetraspanin 12 | 1 | 1 | ||||||||
MIRT027372 | FAM217B | family with sequence similarity 217 member B | 1 | 1 | ||||||||
MIRT027373 | SUB1 | SUB1 homolog, transcriptional regulator | 2 | 3 | ||||||||
MIRT027374 | BCL9 | B-cell CLL/lymphoma 9 | 1 | 1 | ||||||||
MIRT027375 | SACM1L | SAC1 like phosphatidylinositide phosphatase | 1 | 1 | ||||||||
MIRT027376 | ARAP2 | ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 2 | 2 | 3 | ||||||||
MIRT027377 | TRERF1 | transcriptional regulating factor 1 | 1 | 1 | ||||||||
MIRT027378 | NUFIP2 | NUFIP2, FMR1 interacting protein 2 | 1 | 1 | ||||||||
MIRT027379 | PIP5K1C | phosphatidylinositol-4-phosphate 5-kinase type 1 gamma | 1 | 1 | ||||||||
MIRT027380 | PAFAH1B1 | platelet activating factor acetylhydrolase 1b regulatory subunit 1 | 1 | 1 | ||||||||
MIRT027381 | DDIT4 | DNA damage inducible transcript 4 | 1 | 1 | ||||||||
MIRT027382 | TGFBR1 | transforming growth factor beta receptor 1 | 5 | 2 | ||||||||
MIRT027383 | LRCH2 | leucine rich repeats and calponin homology domain containing 2 | 1 | 1 | ||||||||
MIRT027384 | LIFR | LIF receptor alpha | 1 | 1 | ||||||||
MIRT027385 | FBXW7 | F-box and WD repeat domain containing 7 | 4 | 1 | ||||||||
MIRT027386 | POU2F1 | POU class 2 homeobox 1 | 2 | 2 | ||||||||
MIRT027387 | CBFA2T2 | CBFA2/RUNX1 translocation partner 2 | 1 | 1 | ||||||||
MIRT027388 | LCOR | ligand dependent nuclear receptor corepressor | 2 | 8 | ||||||||
MIRT027389 | AEBP2 | AE binding protein 2 | 1 | 1 | ||||||||
MIRT027390 | NEK7 | NIMA related kinase 7 | 1 | 1 | ||||||||
MIRT027391 | MFSD6 | major facilitator superfamily domain containing 6 | 2 | 6 | ||||||||
MIRT053051 | CDH5 | cadherin 5 | 2 | 1 | ||||||||
MIRT053160 | ZEB1 | zinc finger E-box binding homeobox 1 | 2 | 1 | ||||||||
MIRT053339 | PTGER4 | prostaglandin E receptor 4 | 3 | 1 | ||||||||
MIRT053584 | CPEB1 | cytoplasmic polyadenylation element binding protein 1 | 4 | 1 | ||||||||
MIRT054040 | MTOR | mechanistic target of rapamycin kinase | 4 | 2 | ||||||||
MIRT054057 | CFTR | cystic fibrosis transmembrane conductance regulator | 2 | 1 | ||||||||
MIRT054869 | KLF6 | Kruppel like factor 6 | 3 | 2 | ||||||||
MIRT054930 | ZEB2 | zinc finger E-box binding homeobox 2 | 2 | 1 | ||||||||
MIRT068842 | FNDC3A | fibronectin type III domain containing 3A | 2 | 2 | ||||||||
MIRT082058 | TMED5 | transmembrane p24 trafficking protein 5 | 2 | 4 | ||||||||
MIRT086535 | HSPE1-MOB4 | HSPE1-MOB4 readthrough | 2 | 2 | ||||||||
MIRT097055 | TNPO1 | transportin 1 | 2 | 2 | ||||||||
MIRT102616 | UBN2 | ubinuclein 2 | 2 | 2 | ||||||||
MIRT112563 | MLEC | malectin | 2 | 2 | ||||||||
MIRT145022 | TNFAIP1 | TNF alpha induced protein 1 | 2 | 2 | ||||||||
MIRT147277 | KPNA2 | karyopherin subunit alpha 2 | 2 | 10 | ||||||||
MIRT188232 | RAP1B | RAP1B, member of RAS oncogene family | 3 | 1 | ||||||||
MIRT194216 | FAM103A1 | family with sequence similarity 103 member A1 | 2 | 2 | ||||||||
MIRT196792 | ZNF207 | zinc finger protein 207 | 2 | 2 | ||||||||
MIRT200053 | ZNF431 | zinc finger protein 431 | 2 | 2 | ||||||||
MIRT208757 | MBNL1 | muscleblind like splicing regulator 1 | 2 | 2 | ||||||||
MIRT210927 | TET2 | tet methylcytosine dioxygenase 2 | 1 | 1 | ||||||||
MIRT211237 | FGF2 | fibroblast growth factor 2 | 2 | 2 | ||||||||
MIRT211639 | SMARCA5 | SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 5 | 2 | 2 | ||||||||
MIRT218854 | CDKN1A | cyclin dependent kinase inhibitor 1A | 2 | 4 | ||||||||
MIRT218892 | PIM1 | Pim-1 proto-oncogene, serine/threonine kinase | 2 | 1 | ||||||||
MIRT303303 | SNRNP27 | small nuclear ribonucleoprotein U4/U6.U5 subunit 27 | 2 | 2 | ||||||||
MIRT308546 | ZNF654 | zinc finger protein 654 | 2 | 2 | ||||||||
MIRT338018 | DAZAP2 | DAZ associated protein 2 | 2 | 2 | ||||||||
MIRT379479 | JAK2 | Janus kinase 2 | 3 | 1 | ||||||||
MIRT399110 | RNF213 | ring finger protein 213 | 2 | 2 | ||||||||
MIRT437858 | MET | MET proto-oncogene, receptor tyrosine kinase | 2 | 1 | ||||||||
MIRT438193 | NLK | nemo like kinase | 1 | 1 | ||||||||
MIRT438717 | MITF | melanogenesis associated transcription factor | 3 | 1 | ||||||||
MIRT444392 | ZNF480 | zinc finger protein 480 | 2 | 2 | ||||||||
MIRT449015 | ANKRD17 | ankyrin repeat domain 17 | 2 | 2 | ||||||||
MIRT451770 | USP36 | ubiquitin specific peptidase 36 | 2 | 2 | ||||||||
MIRT452413 | QDPR | quinoid dihydropteridine reductase | 2 | 2 | ||||||||
MIRT458487 | RMI1 | RecQ mediated genome instability 1 | 2 | 10 | ||||||||
MIRT459618 | SLC25A33 | solute carrier family 25 member 33 | 2 | 2 | ||||||||
MIRT460768 | L2HGDH | L-2-hydroxyglutarate dehydrogenase | 2 | 2 | ||||||||
MIRT461158 | SLC11A2 | solute carrier family 11 member 2 | 2 | 4 | ||||||||
MIRT461268 | COX10 | COX10, heme A:farnesyltransferase cytochrome c oxidase assembly factor | 2 | 2 | ||||||||
MIRT463488 | ZC3H11A | zinc finger CCCH-type containing 11A | 2 | 12 | ||||||||
MIRT465090 | TSN | translin | 2 | 2 | ||||||||
MIRT466390 | TGOLN2 | trans-golgi network protein 2 | 2 | 2 | ||||||||
MIRT466406 | TGFBR2 | transforming growth factor beta receptor 2 | 2 | 4 | ||||||||
MIRT466804 | STYX | serine/threonine/tyrosine interacting protein | 2 | 2 | ||||||||
MIRT466883 | STX16 | syntaxin 16 | 2 | 2 | ||||||||
MIRT467147 | SREBF2 | sterol regulatory element binding transcription factor 2 | 2 | 2 | ||||||||
MIRT468154 | SGPL1 | sphingosine-1-phosphate lyase 1 | 2 | 2 | ||||||||
MIRT468832 | RRM2 | ribonucleotide reductase regulatory subunit M2 | 2 | 2 | ||||||||
MIRT469425 | REL | REL proto-oncogene, NF-kB subunit | 2 | 2 | ||||||||
MIRT470123 | PSPC1 | paraspeckle component 1 | 2 | 4 | ||||||||
MIRT470274 | PRKAA1 | protein kinase AMP-activated catalytic subunit alpha 1 | 2 | 2 | ||||||||
MIRT470359 | PPP2R5E | protein phosphatase 2 regulatory subunit B'epsilon | 2 | 2 | ||||||||
MIRT470432 | PPP1R15B | protein phosphatase 1 regulatory subunit 15B | 2 | 6 | ||||||||
MIRT470518 | PPP1CC | protein phosphatase 1 catalytic subunit gamma | 2 | 4 | ||||||||
MIRT471100 | PIK3C2B | phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2 beta | 2 | 2 | ||||||||
MIRT471629 | PAPD7 | poly(A) RNA polymerase D7, non-canonical | 2 | 2 | ||||||||
MIRT472408 | NCKAP1 | NCK associated protein 1 | 2 | 2 | ||||||||
MIRT472556 | NACC1 | nucleus accumbens associated 1 | 2 | 4 | ||||||||
MIRT475275 | TOR1AIP2 | torsin 1A interacting protein 2 | 2 | 2 | ||||||||
MIRT475569 | HNRNPF | heterogeneous nuclear ribonucleoprotein F | 2 | 4 | ||||||||
MIRT476590 | G3BP1 | G3BP stress granule assembly factor 1 | 2 | 4 | ||||||||
MIRT478914 | CPS1 | carbamoyl-phosphate synthase 1 | 2 | 2 | ||||||||
MIRT479637 | CD81 | CD81 molecule | 2 | 2 | ||||||||
MIRT479712 | CCNF | cyclin F | 2 | 2 | ||||||||
MIRT480226 | C9orf41 | carnosine N-methyltransferase 1 | 2 | 2 | ||||||||
MIRT480283 | C8orf4 | chromosome 8 open reading frame 4 | 2 | 2 | ||||||||
MIRT480577 | BZW1 | basic leucine zipper and W2 domains 1 | 2 | 2 | ||||||||
MIRT480914 | BCL2L11 | BCL2 like 11 | 2 | 2 | ||||||||
MIRT481937 | ANKRD11 | ankyrin repeat domain 11 | 2 | 12 | ||||||||
MIRT485643 | DICER1 | dicer 1, ribonuclease III | 2 | 4 | ||||||||
MIRT492248 | SLC35F5 | solute carrier family 35 member F5 | 2 | 2 | ||||||||
MIRT493269 | MAP3K4 | mitogen-activated protein kinase kinase kinase 4 | 2 | 2 | ||||||||
MIRT496253 | DNAJC28 | DnaJ heat shock protein family (Hsp40) member C28 | 2 | 2 | ||||||||
MIRT497710 | ZNF645 | zinc finger protein 645 | 2 | 2 | ||||||||
MIRT502490 | FAM84B | family with sequence similarity 84 member B | 2 | 2 | ||||||||
MIRT503888 | PGBD4 | piggyBac transposable element derived 4 | 2 | 2 | ||||||||
MIRT504261 | C1orf147 | chromosome 1 open reading frame 147 | 2 | 4 | ||||||||
MIRT507720 | CLIC4 | chloride intracellular channel 4 | 2 | 4 | ||||||||
MIRT512042 | DNAJA1 | DnaJ heat shock protein family (Hsp40) member A1 | 2 | 6 | ||||||||
MIRT512876 | BTRC | beta-transducin repeat containing E3 ubiquitin protein ligase | 2 | 4 | ||||||||
MIRT513078 | IL20RB | interleukin 20 receptor subunit beta | 2 | 6 | ||||||||
MIRT513562 | FKBP14 | FK506 binding protein 14 | 2 | 2 | ||||||||
MIRT513632 | UBE2A | ubiquitin conjugating enzyme E2 A | 2 | 4 | ||||||||
MIRT513691 | RNF111 | ring finger protein 111 | 2 | 2 | ||||||||
MIRT513760 | PEX5L | peroxisomal biogenesis factor 5 like | 2 | 4 | ||||||||
MIRT516746 | ZNF100 | zinc finger protein 100 | 2 | 2 | ||||||||
MIRT520784 | TBX18 | T-box 18 | 2 | 4 | ||||||||
MIRT521024 | SLC30A5 | solute carrier family 30 member 5 | 2 | 2 | ||||||||
MIRT521902 | PIAS1 | protein inhibitor of activated STAT 1 | 2 | 6 | ||||||||
MIRT522364 | NAP1L1 | nucleosome assembly protein 1 like 1 | 2 | 6 | ||||||||
MIRT523400 | GRIK3 | glutamate ionotropic receptor kainate type subunit 3 | 2 | 4 | ||||||||
MIRT525712 | DCAF12L2 | DDB1 and CUL4 associated factor 12 like 2 | 2 | 2 | ||||||||
MIRT526325 | UGT2A1 | UDP glucuronosyltransferase family 2 member A1 complex locus | 2 | 2 | ||||||||
MIRT526565 | UGT2A2 | UDP glucuronosyltransferase family 2 member A2 | 2 | 2 | ||||||||
MIRT526793 | ZNF223 | zinc finger protein 223 | 2 | 2 | ||||||||
MIRT527746 | NANOGNB | NANOG neighbor homeobox | 2 | 2 | ||||||||
MIRT528459 | NXT2 | nuclear transport factor 2 like export factor 2 | 2 | 2 | ||||||||
MIRT532825 | ZNF827 | zinc finger protein 827 | 2 | 2 | ||||||||
MIRT534604 | RORA | RAR related orphan receptor A | 2 | 2 | ||||||||
MIRT534670 | RNF152 | ring finger protein 152 | 2 | 2 | ||||||||
MIRT535722 | N4BP1 | NEDD4 binding protein 1 | 2 | 2 | ||||||||
MIRT536332 | LEFTY1 | left-right determination factor 1 | 2 | 2 | ||||||||
MIRT536625 | IPO7 | importin 7 | 2 | 2 | ||||||||
MIRT537095 | GPR135 | G protein-coupled receptor 135 | 2 | 2 | ||||||||
MIRT537901 | DYRK2 | dual specificity tyrosine phosphorylation regulated kinase 2 | 2 | 4 | ||||||||
MIRT541193 | HSP90AA1 | heat shock protein 90 alpha family class A member 1 | 2 | 2 | ||||||||
MIRT545416 | SLC39A6 | solute carrier family 39 member 6 | 2 | 2 | ||||||||
MIRT546237 | TNRC18P2 | trinucleotide repeat containing 18 pseudogene 2 | 2 | 4 | ||||||||
MIRT547360 | NAA30 | N(alpha)-acetyltransferase 30, NatC catalytic subunit | 2 | 2 | ||||||||
MIRT547538 | MAML3 | mastermind like transcriptional coactivator 3 | 2 | 2 | ||||||||
MIRT548060 | GOLGA7 | golgin A7 | 2 | 2 | ||||||||
MIRT549247 | ATXN1L | ataxin 1 like | 2 | 4 | ||||||||
MIRT551438 | ZNF490 | zinc finger protein 490 | 2 | 4 | ||||||||
MIRT552563 | ZFP36L2 | ZFP36 ring finger protein like 2 | 2 | 4 | ||||||||
MIRT553238 | TVP23C | trans-golgi network vesicle protein 23 homolog C | 2 | 2 | ||||||||
MIRT554919 | RAP2C | RAP2C, member of RAS oncogene family | 2 | 2 | ||||||||
MIRT555004 | RAB39B | RAB39B, member RAS oncogene family | 2 | 2 | ||||||||
MIRT555005 | RAB33B | RAB33B, member RAS oncogene family | 2 | 2 | ||||||||
MIRT555110 | PURB | purine rich element binding protein B | 2 | 2 | ||||||||
MIRT555439 | NT5C3A | 5'-nucleotidase, cytosolic IIIA | 2 | 2 | ||||||||
MIRT555536 | PLEKHA3 | pleckstrin homology domain containing A3 | 2 | 2 | ||||||||
MIRT555561 | PLEKHA1 | pleckstrin homology domain containing A1 | 2 | 2 | ||||||||
MIRT557624 | GLRX5 | glutaredoxin 5 | 2 | 2 | ||||||||
MIRT558189 | EIF4G2 | eukaryotic translation initiation factor 4 gamma 2 | 2 | 4 | ||||||||
MIRT558369 | DIDO1 | death inducer-obliterator 1 | 2 | 4 | ||||||||
MIRT559235 | BICD2 | BICD cargo adaptor 2 | 2 | 4 | ||||||||
MIRT559244 | BEND4 | BEN domain containing 4 | 2 | 2 | ||||||||
MIRT561655 | RNF219 | ring finger protein 219 | 2 | 2 | ||||||||
MIRT561719 | PPP2R2A | protein phosphatase 2 regulatory subunit Balpha | 2 | 2 | ||||||||
MIRT562682 | AGO4 | argonaute 4, RISC catalytic component | 2 | 2 | ||||||||
MIRT562889 | NACA2 | nascent polypeptide associated complex alpha subunit 2 | 2 | 2 | ||||||||
MIRT563555 | KIAA1586 | KIAA1586 | 2 | 2 | ||||||||
MIRT564994 | WNK1 | WNK lysine deficient protein kinase 1 | 2 | 2 | ||||||||
MIRT565180 | TTC37 | tetratricopeptide repeat domain 37 | 2 | 2 | ||||||||
MIRT565943 | RREB1 | ras responsive element binding protein 1 | 2 | 2 | ||||||||
MIRT566486 | PCCB | propionyl-CoA carboxylase beta subunit | 2 | 2 | ||||||||
MIRT566865 | LRRC1 | leucine rich repeat containing 1 | 2 | 2 | ||||||||
MIRT567244 | HSPA13 | heat shock protein family A (Hsp70) member 13 | 2 | 2 | ||||||||
MIRT567291 | HNRNPAB | heterogeneous nuclear ribonucleoprotein A/B | 2 | 2 | ||||||||
MIRT570699 | FAM69A | family with sequence similarity 69 member A | 2 | 2 | ||||||||
MIRT570927 | ZNF284 | zinc finger protein 284 | 2 | 2 | ||||||||
MIRT571063 | ALG14 | ALG14, UDP-N-acetylglucosaminyltransferase subunit | 2 | 2 | ||||||||
MIRT571646 | SIX4 | SIX homeobox 4 | 2 | 2 | ||||||||
MIRT573692 | RBM12B | RNA binding motif protein 12B | 2 | 2 | ||||||||
MIRT574265 | ZNF350 | zinc finger protein 350 | 2 | 2 | ||||||||
MIRT574300 | CMTM6 | CKLF like MARVEL transmembrane domain containing 6 | 2 | 2 | ||||||||
MIRT574584 | NACA | nascent polypeptide-associated complex alpha subunit | 2 | 2 | ||||||||
MIRT574844 | CADM1 | cell adhesion molecule 1 | 2 | 2 | ||||||||
MIRT608127 | TSC22D2 | TSC22 domain family member 2 | 2 | 2 | ||||||||
MIRT609020 | WNT7A | Wnt family member 7A | 2 | 4 | ||||||||
MIRT618890 | PABPC1L2A | poly(A) binding protein cytoplasmic 1 like 2A | 2 | 2 | ||||||||
MIRT644803 | NKX3-2 | NK3 homeobox 2 | 2 | 2 | ||||||||
MIRT662979 | PAK3 | p21 (RAC1) activated kinase 3 | 2 | 2 | ||||||||
MIRT668624 | EEA1 | early endosome antigen 1 | 2 | 2 | ||||||||
MIRT679150 | ZDHHC15 | zinc finger DHHC-type containing 15 | 2 | 2 | ||||||||
MIRT697516 | ZBTB7A | zinc finger and BTB domain containing 7A | 2 | 2 | ||||||||
MIRT701145 | PANK1 | pantothenate kinase 1 | 2 | 2 | ||||||||
MIRT704285 | DENND5B | DENN domain containing 5B | 2 | 2 | ||||||||
MIRT704542 | CNEP1R1 | CTD nuclear envelope phosphatase 1 regulatory subunit 1 | 2 | 2 | ||||||||
MIRT705741 | AMD1 | adenosylmethionine decarboxylase 1 | 2 | 2 | ||||||||
MIRT707679 | GPR50 | G protein-coupled receptor 50 | 2 | 2 | ||||||||
MIRT710016 | KCNQ5 | potassium voltage-gated channel subfamily Q member 5 | 2 | 2 | ||||||||
MIRT731782 | PRDM1 | PR/SET domain 1 | 3 | 1 | ||||||||
MIRT732064 | VEGFC | vascular endothelial growth factor C | 3 | 2 | ||||||||
MIRT732470 | SKP1 | S-phase kinase associated protein 1 | 1 | 0 | ||||||||
MIRT733128 | FN1 | fibronectin 1 | 1 | 0 | ||||||||
MIRT733278 | LINC00943 | long intergenic non-protein coding RNA 943 | 2 | 0 | ||||||||
MIRT733919 | TRIB1 | tribbles pseudokinase 1 | 3 | 0 | ||||||||
MIRT734457 | BCL6 | B-cell CLL/lymphoma 6 | 4 | 0 | ||||||||
MIRT734877 | HIF1A | hypoxia inducible factor 1 alpha subunit | 3 | 0 | ||||||||
MIRT734878 | FOXP3 | forkhead box P3 | 3 | 0 | ||||||||
MIRT735315 | ENTPD7 | ectonucleoside triphosphate diphosphohydrolase 7 | 2 | 0 | ||||||||
MIRT735316 | ROS1 | ROS proto-oncogene 1, receptor tyrosine kinase | 2 | 0 | ||||||||
MIRT735656 | ETV1 | ETS variant 1 | 3 | 0 | ||||||||
MIRT736117 | NFE2L2 | nuclear factor, erythroid 2 like 2 | 3 | 0 | ||||||||
MIRT736402 | PRKDC | protein kinase, DNA-activated, catalytic polypeptide | 3 | 0 | ||||||||
MIRT736516 | ANXA2 | annexin A2 | 3 | 0 | ||||||||
MIRT736655 | SRRM4 | serine/arginine repetitive matrix 4 | 1 | 0 | ||||||||
MIRT737510 | TBR1 | T-box, brain 1 | 3 | 0 | ||||||||
MIRT755331 | PTAR1 | protein prenyltransferase alpha subunit repeat containing 1 | 3 | 1 | ||||||||
MIRT755564 | E2F2 | E2F transcription factor 2 | 1 | 1 | ||||||||
MIRT755567 | USP47 | ubiquitin specific peptidase 47 | 6 | 1 |
miRNA-Drug Associations | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
miRNA-Drug Resistance Associations | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|