pre-miRNA Information | |
---|---|
pre-miRNA | hsa-mir-26a-1 |
Genomic Coordinates | chr3: 37969404 - 37969480 |
Synonyms | MIR26A, MIRN26A1, MIR26A1 |
Description | Homo sapiens miR-26a-1 stem-loop |
Comment | The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies . |
RNA Secondary Structure | |
Associated Diseases | |
pre-miRNA | hsa-mir-26a-2 |
Genomic Coordinates | chr12: 57824609 - 57824692 |
Synonyms | MIRN26A2, MIR26A2 |
Description | Homo sapiens miR-26a-2 stem-loop |
Comment | miR-26a was cloned from HeLa cells . |
RNA Secondary Structure | |
Associated Diseases |
Mature miRNA Information | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mature miRNA | hsa-miR-26a-5p | |||||||||||||||||||||||||||
Sequence | 10| UUCAAGUAAUCCAGGAUAGGCU |31 | |||||||||||||||||||||||||||
Evidence | Experimental | |||||||||||||||||||||||||||
Experiments | Cloned | |||||||||||||||||||||||||||
Editing Events in miRNAs |
|
DRVs in miRNA |
|
|||||||||||||||||||||||||
SNPs in miRNA |
|
|||||||||||||||||||||||||||
Putative Targets |
miRNA Expression profile | |
---|---|
Human miRNA Tissue Atlas | |
miRNAs in Extracellular Vesicles |
|
Circulating MicroRNA Expression Profiling |
Biomarker Information |
|
---|
Gene Information | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gene Symbol | EZH2 | ||||||||||||||||||||
Synonyms | ENX-1, ENX1, EZH2b, KMT6, KMT6A, WVS, WVS2 | ||||||||||||||||||||
Description | enhancer of zeste 2 polycomb repressive complex 2 subunit | ||||||||||||||||||||
Transcript | NM_004456 | ||||||||||||||||||||
Other Transcripts | NM_152998 | ||||||||||||||||||||
Expression | |||||||||||||||||||||
Putative miRNA Targets on EZH2 | |||||||||||||||||||||
3'UTR of EZH2 (miRNA target sites are highlighted) |
>EZH2|NM_004456|3'UTR 1 CATCTGCTACCTCCTCCCCCCTCCTCTGAAACAGCTGCCTTAGCTTCAGGAACCTCGAGTACTGTGGGCAATTTAGAAAA 81 AGAACATGCAGTTTGAAATTCTGAATTTGCAAAGTACTGTAAGAATAATTTATAGTAATGAGTTTAAAAATCAACTTTTT 161 ATTGCCTTCTCACCAGCTGCAAAGTGTTTTGTACCAGTGAATTTTTGCAATAATGCAGTATGGTACATTTTTCAACTTTG 241 AATAAAGAATACTTGAACTTGTCCTTGTTGAATC Target sites
Provided by authors
Predicted by miRanda
DRVs
SNPs
DRVs & SNPs
|
||||||||||||||||||||
miRNA-target interactions (Predicted by miRanda) |
|
||||||||||||||||||||
DRVs in gene 3'UTRs | |||||||||||||||||||||
SNPs in gene 3'UTRs |
Experimental Support 1 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Article |
- Wong CF; Tellam RL - The Journal of biological chemistry, 2008
MicroRNA (miRNA) are important regulators of many biological processes, but the targets for most miRNA are still poorly defined. In this study, we profiled the expression of miRNA during myogenesis, from proliferating myoblasts through to terminally differentiated myotubes. Microarray results identified six significantly differentially expressed miRNA that were more than 2-fold different in myotubes. From this list, miRNA-26a (miR-26a), an up-regulated miRNA, was further examined. Overexpression of miR-26a in murine myogenic C2C12 cells induced creatine kinase activity, an enzyme that markedly increases during myogenesis. Further, myoD and myogenin mRNA expression levels were also up-regulated. These results suggest that increased expression of miR-26a promotes myogenesis. Through a bioinformatics approach, we identified the histone methyltransferase, Enhancer of Zeste homolog 2 (Ezh2), as a potential target of miR-26a. Overexpression of miR-26a suppressed the activity of a luciferase reporter construct fused with the 3'-untranslated region of Ezh2. In addition, miR-26a overexpression decreased Ezh2 mRNA expression. These results reveal a model of regulation during myogenesis whereby the up-regulation of miR-26a acts to post-transcriptionally repress Ezh2, a known suppressor of skeletal muscle cell differentiation.
LinkOut: [PMID: 18281287]
|
Experimental Support 2 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | HEK293 |
Disease | MIMAT0000082; |
Location of target site | 3'UTR |
Tools used in this research | miRNAviewer , TargetScan , PicTar , miRBase Target Database |
Original Description (Extracted from the article) |
...
"Luciferase expression was signi茂卢聛cantly reduced in the miR-26a transfected cells compared with the controls (Figure 5F). Importantly
... - Sander S; Bullinger L; Klapproth K; Fiedler et al., 2008, Blood. |
Article |
- Sander S; Bullinger L; Klapproth K; Fiedler et al. - Blood, 2008
The MYC oncogene, which is commonly mutated/amplified in tumors, represents an important regulator of cell growth because of its ability to induce both proliferation and apoptosis. Recent evidence links MYC to altered miRNA expression, thereby suggesting that MYC-regulated miRNAs might contribute to tumorigenesis. To further analyze the impact of MYC-regulated miRNAs, we investigated a murine lymphoma model harboring the MYC transgene in a Tet-off system to control its expression. Microarray-based miRNA expression profiling revealed both known and novel MYC targets. Among the miRNAs repressed by MYC, we identified the potential tumor suppressor miR-26a, which possessed the ability to attenuate proliferation in MYC-dependent cells. Interestingly, miR-26a was also found to be deregulated in primary human Burkitt lymphoma samples, thereby probably being of clinical relevance. Although today only few miRNA targets have been identified in human disease, we could show that ectopic expression of miR-26a influenced cell cycle progression by targeting the bona fide oncogene EZH2, a Polycomb protein and global regulator of gene expression yet unknown to be regulated by miRNAs. Thus, in addition to directly targeting protein-coding genes, MYC modulates genes important to oncogenesis via deregulation of miRNAs, thereby vitally contributing to MYC-induced lymphomagenesis.
LinkOut: [PMID: 18713946]
|
Experimental Support 3 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Article |
- Kota J; Chivukula RR; O'Donnell KA; Wentzel et al. - Cell, 2009
Therapeutic strategies based on modulation of microRNA (miRNA) activity hold great promise due to the ability of these small RNAs to potently influence cellular behavior. In this study, we investigated the efficacy of a miRNA replacement therapy for liver cancer. We demonstrate that hepatocellular carcinoma (HCC) cells exhibit reduced expression of miR-26a, a miRNA that is normally expressed at high levels in diverse tissues. Expression of this miRNA in liver cancer cells in vitro induces cell-cycle arrest associated with direct targeting of cyclins D2 and E2. Systemic administration of this miRNA in a mouse model of HCC using adeno-associated virus (AAV) results in inhibition of cancer cell proliferation, induction of tumor-specific apoptosis, and dramatic protection from disease progression without toxicity. These findings suggest that delivery of miRNAs that are highly expressed and therefore tolerated in normal tissues but lost in disease cells may provide a general strategy for miRNA replacement therapies.
LinkOut: [PMID: 19524505]
|
Experimental Support 4 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Article |
- Witwer KW; Sisk JM; Gama L; Clements JE - Journal of immunology (Baltimore, Md. : 1950), 2010
IFN-beta production is an inaugural event in the innate immune response to viral infections, with relatively small fold changes in IFN-beta expression resulting in the activation of important antiviral signaling cascades. In our rapid SIV/macaque model of HIV encephalitis, the virus enters the CNS within 4 d of infection, accompanied by a marked IFN-beta response that wanes as SIV replication is controlled. The centrality of IFN-beta to the innate antiviral response in the CNS combines with the potential inflammatory damage associated with long-term activation of this pathway to suggest that IFN-beta may be subject to regulatory fine-tuning in addition to well-established transcriptional and message stability mechanisms of regulation. In this paper, we present for the first time evidence that microRNAs (miRNAs), including miR-26a, -34a, -145, and let-7b, may directly regulate IFN-beta in human and macaque cells. In primary primate macrophages, the main cell type implicated in HIV and SIV infection in the CNS, specific miRNAs reduce, whereas miRNA inhibitors enhance, IFN-beta protein production. The potential biologic significance of this regulation is supported by evidence of an apparent negative feedback loop, with increased expression of three IFN-beta-regulating miRNAs by primate macrophages exposed to recombinant IFN-beta or stimulated to produce IFN-beta. Thus, miRNAs may contribute significantly to the regulation of IFN-beta in innate immune responses.
LinkOut: [PMID: 20130213]
|
Experimental Support 5 for Functional miRNA-Target Interaction | |||||||
---|---|---|---|---|---|---|---|
miRNA:Target | ---- | ||||||
Validation Method |
|
||||||
Conditions | LNCaP , DU-145 , PC-3 | ||||||
Disease | 2146.0 | ||||||
Location of target site | 3'UTR | ||||||
Tools used in this research | miRanda , PicTar , TargetScan | ||||||
Original Description (Extracted from the article) |
...
"In our reporter assays
... - Cao P; Deng Z; Wan M; Huang W; Cramer SD; et al., 2010, Molecular cancer. |
||||||
miRNA-target interactions (Provided by authors) |
|
||||||
Article |
- Cao P; Deng Z; Wan M; Huang W; Cramer SD; et al. - Molecular cancer, 2010
BACKGROUND: In prostate cancer (PCa), the common treatment involving androgen ablation alleviates the disease temporarily, but results in the recurrence of highly aggressive and androgen-independent metastatic cancer. Therefore, more effective therapeutic approaches are needed. It is known that aberrant epigenetics contributes to prostate malignancy. Unlike genetic changes, these epigenetic alterations are reversible, which makes them attractive targets in PCa therapy to impede cancer progression. As a histone methyltransferase, Ezh2 plays an essential role in epigenetic regulation. Since Ezh2 is overexpressed and acts as an oncogene in PCa, it has been proposed as a bona fide target of PCa therapy. MicroRNAs (miRNAs) regulate gene expression through modulating protein translation. Recently, the contribution of miRNAs in cancer development is increasingly appreciated. In this report, we present our study showing that microRNA-101 (miR-101) inhibits Ezh2 expression and differentially regulates prostate cancer cells. In addition, the expression of miR-101 alters upon androgen treatment and HIF-1alpha/HIF-1beta induction. RESULT: In our reporter assays, both miR-101 and miR-26a inhibit the expression of a reporter construct containing the 3'-UTR of Ezh2. When ectopically expressed in PC-3, DU145 and LNCaP cells, miR-101 inhibits endogenous Ezh2 expression in all three cell lines, while miR-26a only decreases Ezh2 in DU145. Ectopic miR-101 reduces the invasion ability of PC-3 cells, while restored Ezh2 expression rescues the invasiveness of PC-3 cells. Similarly, miR-101 also inhibits cell invasion and migration of DU145 and LNCaP cells, respectively. Interestingly, ectopic miR-101 exhibits differential effects on the proliferation of PC-3, DU-145 and LNCaP cells and also causes morphological changes of LNCaP cells. In addition, the expression of miR-101 is regulated by androgen receptor and HIF-1alpha/HIF-1beta. While HIF-1alpha/HIF-1beta induced by deferoxamine mesylate (DFO) decreases miR-101 levels, the overall effects of R-1881 on miR-101 expression are stimulatory. CONCLUSIONS: This study indicates that miR-101 targets Ezh2 and decreases the invasiveness of PCa cells, suggesting that miR-101 introduction is a potential therapeutic strategy to combat PCa. MiR-101 differentially regulates prostate cell proliferation. Meanwhile, the expression of miR-101 is also modulated at different physiological conditions, such as androgen stimulation and HIF-1alpha/HIF-1beta induction.
LinkOut: [PMID: 20478051]
|
Experimental Support 6 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | MCF 7 , CCD-1095SK |
Disease | MIMAT0000082 |
Location of target site | 3'UTR |
Tools used in this research | miRanda , PicTar , TargetScanS |
Original Description (Extracted from the article) |
...
"Our observations imply that the loss of miR-26a may result in gained expression of MTDH and EZH2
... - Zhang B; Liu XX; He JR; Zhou CX; Guo M; He et al., 2011, Carcinogenesis. |
Article |
- Zhang B; Liu XX; He JR; Zhou CX; Guo M; He et al. - Carcinogenesis, 2011
The role of miR-26a in carcinogenesis appears to be a complicated one, in the sense that both oncogenic and tumor suppressive effects were reported in cancers such as glioblastoma and hepatocellular carcinoma, respectively. Here, we report for the first time that miR-26a is downregulated in breast cancer specimens and cell lines and its transient transfection initiates apoptosis of breast cancer cell line MCF7 cells. Furthermore, retrovirus-delivered miR-26a impairs the in vitro colony forming and in vivo tumor-loading ability of MCF7 cells. Subsequently, MTDH and EZH2 are identified as two direct targets of miR-26a and they are significantly upregulated in breast cancer. MCF7 xenografts with exogenous miR-26a show that a decrease in expression of both MTDH and EZH2 is accompanied by an increase in apoptosis. Moreover, knockdown of MTDH causes apoptosis while reexpression of MTDH partially reverses the proapoptotic effect of miR-26a in MCF7 cells. Our findings suggest that miR-26a functionally antagonizes human breast carcinogenesis by targeting MTDH and EZH2.
LinkOut: [PMID: 20952513]
|
Experimental Support 7 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | C666-1 , HNE-1 |
Disease | MIMAT0000082 |
Location of target site | 3'UTR |
Tools used in this research | unknown |
Original Description (Extracted from the article) |
...
"this study identified miR-26a as a growth-suppressive miRNA in human NPC
... - Lu J; He ML; Wang L; Chen Y; Liu X; Dong Q; et al., 2011, Cancer research. |
Article |
- Lu J; He ML; Wang L; Chen Y; Liu X; Dong Q; et al. - Cancer research, 2011
Several microRNAs (miRNA) have been implicated in nasopharyngeal carcinoma (NPC), a highly invasive and metastatic cancer that is widely prevalent in southern China. In this study, we report that microRNA miR-26a is commonly downregulated in NPC specimens and NPC cell lines with important functional consequences. Ectopic expression of miR-26a dramatically suppressed cell proliferation and colony formation by inducing G(1)-phase cell-cycle arrest. We found that miR-26a strongly reduced the expression of EZH2 oncogene in NPC cells. Similar to the restoring miR-26 expression, EZH2 downregulation inhibited cell growth and cell-cycle progression, whereas EZH2 overexpression rescued the suppressive effect of miR-26a. Mechanistic investigations revealed that miR-26a suppressed the expression of c-myc, the cyclin D3 and E2, and the cyclin-dependent kinase CDK4 and CDK6 while enhancing the expression of CDK inhibitors p14(ARF) and p21(CIP1) in an EZH2-dependent manner. Interestingly, cyclin D2 was regulated by miR-26a but not by EZH2, revealing cyclin D2 as another direct yet mechanistically distinct target of miR-26a. In clinical specimens, EZH2 was widely overexpressed and its mRNA levels were inversely correlated with miR-26a expression. Taken together, our results indicate that miR-26a functions as a growth-suppressive miRNA in NPC, and that its suppressive effects are mediated chiefly by repressing EZH2 expression.
LinkOut: [PMID: 21199804]
|
Experimental Support 8 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | C666-1 |
Location of target site | 3'UTR |
Tools used in this research | miRanda , PicTar , TargetScan |
Original Description (Extracted from the article) |
...
"Our data are the 茂卢聛rst to document that EZH2 expression could serve as a potential prognostic marker for NPC
... - Alajez NM; Shi W; Hui AB; Bruce J; et al., 2010, Cell death & disease. |
Article |
- Alajez NM; Shi W; Hui AB; Bruce J; et al. - Cell death & disease, 2010
There is increasing evidence supporting the role of members of the polycomb group (PcG) gene family in tumor development and progression. However, their precise role in tumorigenesis and mechanisms of their regulation remain to be elucidated. Using nasopharyngeal carcinoma (NPC) as a disease model, a comprehensive analysis was undertaken on the clinical significance of EZH2 expression, identification of the cellular processes regulated by EZH2, and the mechanisms of its deregulated expression. Herein, we report EZH2 as being associated with a higher risk of relapse in NPC patients (P = 0.002). Genome-wide microarray and bioinformatics identified several vital cellular processes (such as differentiation, development, and apoptosis) to be regulated by EZH2, corroborated by in vitro lethality, and delayed tumor formation in vivo upon EZH2 depletion. The combination of global microRNA (miR) profiling in primary NPC specimens, and in silico analyses provided several candidate miRs that could regulate EZH2. Using a luciferase-based assay, miR-26a, miR-101, and miR-98 were validated as bona fide regulators of EZH2 expression. In particular, miR-98 was underexpressed in relapsed patient samples, strongly suggesting an important role for the miR-98 and EZH2 axis in NPC biology.
LinkOut: [PMID: 21368858]
|
Experimental Support 9 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | HEK293T , PLC5HCC |
Disease | hepatocellular carcinoma |
Location of target site | 3'UTR |
Tools used in this research | Unspecified |
Original Description (Extracted from the article) |
...
miR-26a post-transcriptionally suppressed EZH2 expression in HCC cells
... - Yip WK; Cheng AS; Zhu R; Lung RW; Tsang DP; et al., 2011, PloS one. |
Article |
- Yip WK; Cheng AS; Zhu R; Lung RW; Tsang DP; et al. - PloS one, 2011
BACKGROUND: The biological pathways and functional properties by which misexpressed microRNAs (miRNAs) contribute to liver carcinogenesis have been intensively investigated. However, little is known about the upstream mechanisms that deregulate miRNA expressions in this process. In hepatocellular carcinoma (HCC), hepatitis B virus (HBV) X protein (HBx), a transcriptional trans-activator, is frequently expressed in truncated form without carboxyl-terminus but its role in miRNA expression and HCC development is unclear. METHODS: Human non-tumorigenic hepatocytes were infected with lentivirus-expressing full-length and carboxyl-terminal truncated HBx (Ct-HBx) for cell growth assay and miRNA profiling. Chromatin immunoprecipitation microarray was performed to identify the miRNA promoters directly associated with HBx. Direct transcriptional control was verified by luciferase reporter assay. The differential miRNA expressions were further validated in a cohort of HBV-associated HCC tissues using real-time PCR. RESULTS: Hepatocytes expressing Ct-HBx grew significantly faster than the full-length HBx counterparts. Ct-HBx decreased while full-length HBx increased the expression of a set of miRNAs with growth-suppressive functions. Interestingly, Ct-HBx bound to and inhibited the transcriptional activity of some of these miRNA promoters. Notably, some of the examined repressed-miRNAs (miR-26a, -29c, -146a and -190) were also significantly down-regulated in a subset of HCC tissues with carboxyl-terminal HBx truncation compared to their matching non-tumor tissues, highlighting the clinical relevance of our data. CONCLUSION: Our results suggest that Ct-HBx directly regulates miRNA transcription and in turn promotes hepatocellular proliferation, thus revealing a viral contribution of miRNA deregulation during hepatocarcinogenesis.
LinkOut: [PMID: 21829663]
|
Experimental Support 10 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | 5-8F , CNE2 |
Location of target site | 3'UTR |
Original Description (Extracted from the article) |
...
The results indicated that miR-26a overexpression led to a decreased level of EZH2 mRNA and protein
... - Yu L; Lu J; Zhang B; Liu X; Wang L; Li SY; et al., 2013, Oncology letters. |
Article |
- Yu L; Lu J; Zhang B; Liu X; Wang L; Li SY; et al. - Oncology letters, 2013
Nasopharyngeal carcinoma (NPC) is a highly invasive and metastatic type of cancer that is widely prevalent in Southern China. Studies have shown that several microRNAs (miRNAs) are implicated in NPC metastasis. Our previous studies have demonstrated that miRNA miR-26a inhibits cell growth and tumorigenesis of NPC through the repression of enhancer of zeste homolog 2 (EZH2). However, the role of miR-26a in NPC metastasis remains unknown. In this study, we showed that ectopic expression of miR-26a inhibited the migratory and invasive capacities of NPC cells in vitro. Additionally, we used a murine model to investigate the role of miR-26a in NPC metastasis and results showed that miR-26a overexpression suppresses the metastatic behavior of NPC cells in vivo. Furthermore, the data demonstrated that miR-26a decreased the expression levels of EZH2 in vitro and in vivo, suggesting that the antimetastatic effect of miR-26a in NPC was mediated by regulating EZH2. Therefore, these findings indicate that miR-26a functions as an antimetastatic miRNA in NPC and that its antimetastatic effects are mediated mainly by repressing EZH2 expression.
LinkOut: [PMID: 23599767]
|
Experimental Support 11 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | HT115 |
Location of target site | 3'UTR |
Tools used in this research | TargetScan |
Original Description (Extracted from the article) |
...
Overexpression of hsa-miR-26a-5p or hsa-let- 7b-5p in HT115 cells led to significant reduction in EZH2 protein levels.
... - Vishnubalaji R; Hamam R; Abdulla MH; et al., 2015, Cell death & disease. |
Article |
- Vishnubalaji R; Hamam R; Abdulla MH; et al. - Cell death & disease, 2015
Despite recent advances in cancer management, colorectal cancer (CRC) remains the third most common cancer and a major health-care problem worldwide. MicroRNAs have recently emerged as key regulators of cancer development and progression by targeting multiple cancer-related genes; however, such regulatory networks are not well characterized in CRC. Thus, the aim of this study was to perform global messenger RNA (mRNA) and microRNA expression profiling in the same CRC samples and adjacent normal tissues and to identify potential miRNA-mRNA regulatory networks. Our data revealed 1273 significantly upregulated and 1902 downregulated genes in CRC. Pathway analysis revealed significant enrichment in cell cycle, integrated cancer, Wnt (wingless-type MMTV integration site family member), matrix metalloproteinase, and TGF-beta pathways in CRC. Pharmacological inhibition of Wnt (using XAV939 or IWP-2) or TGF-beta (using SB-431542) pathways led to dose- and time-dependent inhibition of CRC cell growth. Similarly, our data revealed up- (42) and downregulated (61) microRNAs in the same matched samples. Using target prediction and bioinformatics, ~77% of the upregulated genes were predicted to be targeted by microRNAs found to be downregulated in CRC. We subsequently focused on EZH2 (enhancer of zeste homolog 2 ), which was found to be regulated by hsa-miR-26a-5p and several members of the let-7 (lethal-7) family in CRC. Significant inverse correlation between EZH2 and hsa-miR-26a-5p (R(2)=0.56, P=0.0001) and hsa-let-7b-5p (R(2)=0.19, P=0.02) expression was observed in the same samples, corroborating the belief of EZH2 being a bona fide target for these two miRNAs in CRC. Pharmacological inhibition of EZH2 led to significant reduction in trimethylated histone H3 on lysine 27 (H3K27) methylation, marked reduction in cell proliferation, and migration in vitro. Concordantly, small interfering RNA-mediated knockdown of EZH2 led to similar effects on CRC cell growth in vitro. Therefore, our data have revealed several hundred potential miRNA-mRNA regulatory networks in CRC and suggest targeting relevant networks as potential therapeutic strategy for CRC.
LinkOut: [PMID: 25611389]
|
Experimental Support 12 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | HEC-1B |
Location of target site | 3'UTR |
Tools used in this research | TargetScan |
Original Description (Extracted from the article) |
...
EZH2 is the direct molecular target of miR-26a
... - Jiang FZ; He YY; Wang HH; Zhang HL; Zhang et al., 2015, Oncotarget. |
Article |
- Jiang FZ; He YY; Wang HH; Zhang HL; Zhang et al. - Oncotarget, 2015
The tumor suppressor p53 and the transcriptional repressor Enhancer of Zeste Homolog 2 (EZH2) have both been implicated in the regulation of epithelial-mesenchymal transition (EMT) and tumor metastasis via their impacts on microRNA expression. Here, we report that mutant p53 (mutp53) promotes EMT in endometrial carcinoma (EC) by disrupting p68-Drosha complex assembly. Overexpression of mutp53 has the opposite effect of wild-type p53 (WTp53), repressing miR-26a expression by reducing pri-miR-26a-1 processing in p53-null EC cells. Re-expression of miR-26a in mutp53 EC cells decreases cell invasion and promotes mesenchymal-epithelial transition (MET). Rescuing miR-26a expression also inhibits EZH2, N-cadherin, Vimentin, and Snail expression and induces E-cadherin expression both in vitro and in vivo. Moreover, patients with higher serum miR-26a levels have a better survival rate. These results suggest that p53 gain-of-function mutations accelerate EC tumor progression and metastasis by interfering with Drosha and p68 binding and pri-miR-26a-1 processing, resulting in reduced miR-26a expression and EZH2 overexpression.
LinkOut: [PMID: 26587974]
|
Experimental Support 13 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | HCCLM3 , HepG2 , HEK293T |
Disease | 2146.0 |
Location of target site | 3'UTR |
Original Description (Extracted from the article) |
...
"Through downregulation of EZH2 expression and up-regulation of E-cadherin expression
... - Ma DN; Chai ZT; Zhu XD; Zhang N; Zhan DH; et al., 2016, Journal of hematology & oncology. |
Article |
- Ma DN; Chai ZT; Zhu XD; Zhang N; Zhan DH; et al. - Journal of hematology & oncology, 2016
BACKGROUND: Our previous study reported that microRNA-26a (miR-26a) inhibited tumor progression by inhibiting tumor angiogenesis and intratumoral macrophage infiltration in hepatocellular carcinoma (HCC). The direct roles of miR-26a on tumor cell invasion remain poorly understood. In this study, we aim to explore the mechanism of miR-26a in modulating epithelial-mesenchymal transition (EMT) in HCC. METHODS: In vitro cell morphology and cell migration were compared between the hepatoma cell lines HCCLM3 and HepG2, which were established in the previous study. Overexpression and down-regulation of miR-26a were induced in these cell lines, and Western blot and immunofluorescence assays were used to detect the expression of EMT markers. Xenograft nude mouse models were used to observe tumor growth and pulmonary metastasis. Immunohistochemical assays were conducted to study the relationships between miR-26a expression and enhancer of zeste homolog 2 (EZH2) and E-cadherin expression in human HCC samples. RESULTS: Down-regulation of miR-26a in HCCLM3 and HepG2 cells resulted in an EMT-like cell morphology and high motility in vitro and increased in tumor growth and pulmonary metastasis in vivo. Through down-regulation of EZH2 expression and up-regulation of E-cadherin expression, miR-26a inhibited the EMT process in vitro and in vivo. Luciferase reporter assay showed that miR-26a directly interacted with EZH2 messenger RNA (mRNA). Furthermore, the expression of miR-26a was positively correlated with E-cadherin expression and inversely correlated with EZH2 expression in human HCC tissue. CONCLUSIONS: miR-26a inhibited the EMT process in HCC by down-regulating EZH2 expression.
LinkOut: [PMID: 26733151]
|
Experimental Support 14 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | tumor specimen |
Disease | MIMAT0000082 |
Location of target site | 3'UTR |
Tools used in this research | miRecords |
Original Description (Extracted from the article) |
...
"Combining all the correlations
... - Sharma V; Purkait S; Takkar S; Malgulwar et al., 2016, Brain tumor pathology. |
Article |
- Sharma V; Purkait S; Takkar S; Malgulwar et al. - Brain tumor pathology, 2016
Enhancer of Zeste homologue2 (EZH2) is an epigenetic regulator that functions as oncogene in astrocytic tumors, however, EZH2 regulation remains little studied. In this study, we measured EZH2 levels in low (Gr-II,DA) and high grade (Gr-IV,GBM) astrocytic tumors and found significant increased EZH2 transcript level with grade(median DA-8.5, GBM-28.9).However, a different trend was reflected in protein levels, with GBMs showing high EZH2 LI(median-26.5) compared to DA (median 0.3). This difference in correlation of EZH2 protein and RNA levels suggested post-transcriptional regulation of EZH2, likely mediated by miRNAs. We selected eleven miRNAs that strongly predicted to target EZH2 and measured their expression. Three miRNAs (miR-26a-5p,miR27a-3p and miR-498) showed significant correlation with EZH2 protein, suggesting them as regulators of EZH2, however miR-26a-5p levels decreased with grade. ChIP analyses revealed H3K27me3 modifications in miR-26a promoter suggesting feedback loop between EZH2 and miR26a. We further measured six downstream miRNA targets of EZH2 and found significant downregulation of four (miR-181a/b and 200b/c) in GBM. Interestingly, EZH2 associated miRNAs were predicted to target 25 genes in glioma-pathway, suggesting their role in tumor formation or progression. Collectively, our work suggests EZH2 and its miRNA interactors may serve as promising biomarkers for progression of astrocytic tumors and may offer novel therapeutic strategies.
LinkOut: [PMID: 26746204]
|
Experimental Support 15 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | HepG2 , LO2 , SMMC- 7721 |
Disease | ; 2146.0 |
Location of target site | 3'UTR |
Tools used in this research | previous_study |
Original Description (Extracted from the article) |
...
EZH2 is a direct target of miR-26a in HCC cells. luciferase reporter assay was performed to determine whether miR-26a could bind to the 3'UTR of EZH2 mRNA.
"EZH2 is a direct target of miR-26a in HCC cells. significantly decreased the luciferase activity of EZH2-3'UTR-WT reporter
... - Zhuang C; Wang P; Huang D; Xu L; Wang X; et al., 2016, International journal of oncology. |
Article |
- Zhuang C; Wang P; Huang D; Xu L; Wang X; et al. - International journal of oncology, 2016
Accumulating evidence demonstrates the important roles of microRNAs (miRNAs) in tumor development and progression. miR-26a has been reported to be downregulated in several types of cancers including hepatocellular carcinoma, but the underlying mechanism of how miR-26a is repressed remains largely unknown. In the present study, we performed western blot analysis, qRT-PCR, luciferase reporter assay and chromatin immunoprecipitation assay to investigate the relationship between miR-26a and the enhancer of zest homologue 2 (EZH2). CCK-8 assay and colony formation assay were carried out to explore the effect of miR-26a on HCC cells proliferation. We demonstrated that miR-26a was epigenetically repressed by EZH2-mediated H3K27 trimethylation within the miR-26a promoter. Moreover, we confirmed that EZH2 was also a direct target of miR-26a in HCC cells, thus, creating a double-negative feedback loop. Furthermore, miR-26a restoration increased the expressions of its host genes (CTDSPL and CTDSP2). Overexpression of EZH2 abrogated miR-26a induction of CTDSPL and CTDSP2. Restoring the balance of the double-negative feedback loop by miR-26a overpression or EZH2 silence significantly inhibited HCC cell growth. Overexpression of EZH2 rescued the growth inhibition effect of miR-26a. These findings suggest that an imbalanced double-negative feedback loop between EZH2 and miR-26a exists in HCC cells, which contributes to miR-26a deregulation and regulates tumor cells proliferation.
LinkOut: [PMID: 26781064]
|
MiRNA-Target Expression Profile | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
MiRNA-Target Expression Profile (TCGA) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
ID | Target | Description | Validation methods | |||||||||
Strong evidence | Less strong evidence | |||||||||||
MIRT000109 | HMGA2 | high mobility group AT-hook 2 | 4 | 5 | ||||||||
MIRT000110 | HMGA1 | high mobility group AT-hook 1 | 3 | 5 | ||||||||
MIRT000111 | CCNE2 | cyclin E2 | 4 | 2 | ||||||||
MIRT000112 | CCND2 | cyclin D2 | 5 | 10 | ||||||||
MIRT001021 | CDK8 | cyclin dependent kinase 8 | 2 | 2 | ||||||||
MIRT001022 | CDC6 | cell division cycle 6 | 3 | 3 | ||||||||
MIRT001039 | LIF | LIF, interleukin 6 family cytokine | 1 | 2 | ||||||||
MIRT001095 | PTEN | phosphatase and tensin homolog | 4 | 7 | ||||||||
MIRT001771 | EZH2 | enhancer of zeste 2 polycomb repressive complex 2 subunit | 5 | 11 | ||||||||
MIRT001772 | PLAG1 | PLAG1 zinc finger | 3 | 2 | ||||||||
MIRT002315 | SERBP1 | SERPINE1 mRNA binding protein 1 | 3 | 3 | ||||||||
MIRT002340 | SMAD1 | SMAD family member 1 | 4 | 6 | ||||||||
MIRT003212 | MAP3K2 | mitogen-activated protein kinase kinase kinase 2 | 3 | 2 | ||||||||
MIRT003213 | RB1 | RB transcriptional corepressor 1 | 5 | 2 | ||||||||
MIRT003803 | SMAD4 | SMAD family member 4 | 3 | 3 | ||||||||
MIRT003968 | MYC | MYC proto-oncogene, bHLH transcription factor | 2 | 2 | ||||||||
MIRT004338 | CTGF | connective tissue growth factor | 2 | 2 | ||||||||
MIRT004339 | STRADB | STE20-related kinase adaptor beta | 4 | 4 | ||||||||
MIRT004615 | IFNB1 | interferon beta 1 | 3 | 2 | ||||||||
MIRT004676 | GSK3B | glycogen synthase kinase 3 beta | 7 | 10 | ||||||||
MIRT005587 | CPEB2 | cytoplasmic polyadenylation element binding protein 2 | 3 | 2 | ||||||||
MIRT005588 | CPEB3 | cytoplasmic polyadenylation element binding protein 3 | 4 | 2 | ||||||||
MIRT005589 | CPEB4 | cytoplasmic polyadenylation element binding protein 4 | 3 | 2 | ||||||||
MIRT005751 | GDAP1 | ganglioside induced differentiation associated protein 1 | 3 | 1 | ||||||||
MIRT005920 | MTDH | metadherin | 5 | 4 | ||||||||
MIRT006306 | CDK6 | cyclin dependent kinase 6 | 2 | 1 | ||||||||
MIRT006309 | CCNE1 | cyclin E1 | 3 | 2 | ||||||||
MIRT006389 | ESR1 | estrogen receptor 1 | 1 | 1 | ||||||||
MIRT006711 | ABCA1 | ATP binding cassette subfamily A member 1 | 2 | 1 | ||||||||
MIRT006712 | ARL4C | ADP ribosylation factor like GTPase 4C | 2 | 1 | ||||||||
MIRT007177 | E2F7 | E2F transcription factor 7 | 2 | 7 | ||||||||
MIRT007347 | NOS2 | nitric oxide synthase 2 | 3 | 2 | ||||||||
MIRT007374 | IL6 | interleukin 6 | 2 | 1 | ||||||||
MIRT030358 | TGFBR2 | transforming growth factor beta receptor 2 | 3 | 1 | ||||||||
MIRT050053 | HIST1H4E | histone cluster 1 H4 family member e | 1 | 1 | ||||||||
MIRT050054 | ZNF814 | zinc finger protein 814 | 1 | 1 | ||||||||
MIRT050055 | ZNF233 | zinc finger protein 233 | 1 | 1 | ||||||||
MIRT050056 | ABCB7 | ATP binding cassette subfamily B member 7 | 1 | 1 | ||||||||
MIRT050057 | SCRN1 | secernin 1 | 1 | 1 | ||||||||
MIRT050058 | NABP1 | nucleic acid binding protein 1 | 2 | 8 | ||||||||
MIRT050059 | FAM20B | FAM20B, glycosaminoglycan xylosylkinase | 1 | 1 | ||||||||
MIRT050060 | ARCN1 | archain 1 | 1 | 1 | ||||||||
MIRT050061 | ANO3 | anoctamin 3 | 1 | 1 | ||||||||
MIRT050062 | TFAM | transcription factor A, mitochondrial | 1 | 1 | ||||||||
MIRT050063 | FER | FER tyrosine kinase | 1 | 1 | ||||||||
MIRT050064 | HIAT1 | major facilitator superfamily domain containing 14A | 1 | 1 | ||||||||
MIRT050065 | PPP1CC | protein phosphatase 1 catalytic subunit gamma | 1 | 1 | ||||||||
MIRT050066 | SLC35B4 | solute carrier family 35 member B4 | 1 | 1 | ||||||||
MIRT050067 | RASA1 | RAS p21 protein activator 1 | 1 | 1 | ||||||||
MIRT050068 | COX1 | cytochrome c oxidase subunit I | 1 | 1 | ||||||||
MIRT050069 | MSL3 | MSL complex subunit 3 | 1 | 1 | ||||||||
MIRT050070 | GGA2 | golgi associated, gamma adaptin ear containing, ARF binding protein 2 | 1 | 1 | ||||||||
MIRT050071 | GIT2 | GIT ArfGAP 2 | 1 | 1 | ||||||||
MIRT050072 | DNMT1 | DNA methyltransferase 1 | 1 | 1 | ||||||||
MIRT050073 | MFHAS1 | malignant fibrous histiocytoma amplified sequence 1 | 1 | 1 | ||||||||
MIRT050074 | UBA2 | ubiquitin like modifier activating enzyme 2 | 1 | 1 | ||||||||
MIRT050075 | DCAF7 | DDB1 and CUL4 associated factor 7 | 1 | 1 | ||||||||
MIRT050076 | MTRF1 | mitochondrial translation release factor 1 | 1 | 1 | ||||||||
MIRT050077 | WBSCR16 | RCC1 like | 1 | 1 | ||||||||
MIRT050078 | NUAK1 | NUAK family kinase 1 | 1 | 1 | ||||||||
MIRT050079 | TUT1 | terminal uridylyl transferase 1, U6 snRNA-specific | 1 | 1 | ||||||||
MIRT050080 | PNMA2 | paraneoplastic Ma antigen 2 | 1 | 1 | ||||||||
MIRT050081 | ACTL8 | actin like 8 | 1 | 1 | ||||||||
MIRT050082 | HSPA8 | heat shock protein family A (Hsp70) member 8 | 1 | 1 | ||||||||
MIRT050083 | DHX15 | DEAH-box helicase 15 | 1 | 1 | ||||||||
MIRT050084 | TCP1 | t-complex 1 | 1 | 1 | ||||||||
MIRT050085 | SLC25A5 | solute carrier family 25 member 5 | 1 | 1 | ||||||||
MIRT050086 | LSM14A | LSM14A, mRNA processing body assembly factor | 1 | 1 | ||||||||
MIRT050087 | CAMKV | CaM kinase like vesicle associated | 1 | 1 | ||||||||
MIRT050088 | ALG10B | ALG10B, alpha-1,2-glucosyltransferase | 1 | 1 | ||||||||
MIRT050089 | TYW1 | tRNA-yW synthesizing protein 1 homolog | 1 | 1 | ||||||||
MIRT050090 | RPL13A | ribosomal protein L13a | 1 | 1 | ||||||||
MIRT050091 | AGO1 | argonaute 1, RISC catalytic component | 1 | 1 | ||||||||
MIRT050092 | TXLNG | taxilin gamma | 1 | 1 | ||||||||
MIRT050093 | RAB18 | RAB18, member RAS oncogene family | 1 | 1 | ||||||||
MIRT050094 | RPS27A | ribosomal protein S27a | 1 | 1 | ||||||||
MIRT050095 | RPS26 | ribosomal protein S26 | 1 | 1 | ||||||||
MIRT050096 | PIKFYVE | phosphoinositide kinase, FYVE-type zinc finger containing | 1 | 1 | ||||||||
MIRT050097 | TP53INP1 | tumor protein p53 inducible nuclear protein 1 | 1 | 1 | ||||||||
MIRT050098 | ZNF703 | zinc finger protein 703 | 1 | 1 | ||||||||
MIRT050099 | MTRF1L | mitochondrial translational release factor 1 like | 1 | 1 | ||||||||
MIRT050100 | ZNF506 | zinc finger protein 506 | 1 | 1 | ||||||||
MIRT050101 | KCTD5 | potassium channel tetramerization domain containing 5 | 1 | 1 | ||||||||
MIRT050102 | CTC1 | CST telomere replication complex component 1 | 1 | 1 | ||||||||
MIRT050103 | TKT | transketolase | 1 | 1 | ||||||||
MIRT050104 | LYST | lysosomal trafficking regulator | 1 | 1 | ||||||||
MIRT050105 | FAM134A | reticulophagy regulator family member 2 | 1 | 1 | ||||||||
MIRT050106 | NKX2-5 | NK2 homeobox 5 | 1 | 1 | ||||||||
MIRT050107 | AURKAIP1 | aurora kinase A interacting protein 1 | 1 | 1 | ||||||||
MIRT050108 | ATP1A1 | ATPase Na+/K+ transporting subunit alpha 1 | 1 | 1 | ||||||||
MIRT050109 | COASY | Coenzyme A synthase | 1 | 1 | ||||||||
MIRT050110 | CTR9 | CTR9 homolog, Paf1/RNA polymerase II complex component | 1 | 1 | ||||||||
MIRT050111 | COX3 | cytochrome c oxidase III | 1 | 1 | ||||||||
MIRT050112 | ELOVL6 | ELOVL fatty acid elongase 6 | 1 | 1 | ||||||||
MIRT050113 | PIGT | phosphatidylinositol glycan anchor biosynthesis class T | 1 | 1 | ||||||||
MIRT050114 | TMCC3 | transmembrane and coiled-coil domain family 3 | 1 | 1 | ||||||||
MIRT050115 | ARHGEF1 | Rho guanine nucleotide exchange factor 1 | 1 | 1 | ||||||||
MIRT050116 | SHC2 | SHC adaptor protein 2 | 1 | 1 | ||||||||
MIRT050117 | PSMA3 | proteasome subunit alpha 3 | 1 | 1 | ||||||||
MIRT050118 | PTTG1 | pituitary tumor-transforming 1 | 1 | 1 | ||||||||
MIRT050119 | RPS24 | ribosomal protein S24 | 1 | 1 | ||||||||
MIRT050120 | SPTBN1 | spectrin beta, non-erythrocytic 1 | 1 | 1 | ||||||||
MIRT050121 | UBTF | upstream binding transcription factor, RNA polymerase I | 1 | 1 | ||||||||
MIRT050122 | BTBD3 | BTB domain containing 3 | 1 | 1 | ||||||||
MIRT050123 | AHR | aryl hydrocarbon receptor | 1 | 1 | ||||||||
MIRT050124 | EEF1B2 | eukaryotic translation elongation factor 1 beta 2 | 1 | 1 | ||||||||
MIRT050125 | MRPL51 | mitochondrial ribosomal protein L51 | 1 | 1 | ||||||||
MIRT050126 | SETD2 | SET domain containing 2 | 1 | 1 | ||||||||
MIRT050127 | LRP6 | LDL receptor related protein 6 | 1 | 1 | ||||||||
MIRT050128 | RHOBTB1 | Rho related BTB domain containing 1 | 1 | 1 | ||||||||
MIRT050129 | HIST1H4J | histone cluster 1 H4 family member j | 1 | 1 | ||||||||
MIRT050130 | MYO10 | myosin X | 1 | 1 | ||||||||
MIRT050131 | ATP7B | ATPase copper transporting beta | 1 | 1 | ||||||||
MIRT050132 | CSRP2BP | lysine acetyltransferase 14 | 1 | 1 | ||||||||
MIRT050133 | RBM39 | RNA binding motif protein 39 | 1 | 1 | ||||||||
MIRT050134 | C14orf37 | chromosome 14 open reading frame 37 | 2 | 3 | ||||||||
MIRT050135 | SFMBT1 | Scm like with four mbt domains 1 | 1 | 1 | ||||||||
MIRT050136 | KIAA1704 | GPALPP motifs containing 1 | 1 | 1 | ||||||||
MIRT050137 | ABCB9 | ATP binding cassette subfamily B member 9 | 1 | 1 | ||||||||
MIRT050138 | ADM | adrenomedullin | 2 | 11 | ||||||||
MIRT050139 | USP7 | ubiquitin specific peptidase 7 | 1 | 1 | ||||||||
MIRT050140 | TTN | titin | 1 | 1 | ||||||||
MIRT050141 | HNRNPU | heterogeneous nuclear ribonucleoprotein U | 1 | 1 | ||||||||
MIRT050142 | YWHAE | tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon | 1 | 1 | ||||||||
MIRT050143 | CEPT1 | choline/ethanolamine phosphotransferase 1 | 1 | 1 | ||||||||
MIRT050144 | HOXC8 | homeobox C8 | 1 | 1 | ||||||||
MIRT050145 | CTBP1 | C-terminal binding protein 1 | 1 | 1 | ||||||||
MIRT050146 | SET | SET nuclear proto-oncogene | 1 | 1 | ||||||||
MIRT050147 | MCM3AP | minichromosome maintenance complex component 3 associated protein | 1 | 1 | ||||||||
MIRT050148 | TPGS2 | tubulin polyglutamylase complex subunit 2 | 1 | 1 | ||||||||
MIRT050149 | CA2 | carbonic anhydrase 2 | 1 | 1 | ||||||||
MIRT050150 | PCYT1A | phosphate cytidylyltransferase 1, choline, alpha | 1 | 1 | ||||||||
MIRT050151 | ACTN4 | actinin alpha 4 | 1 | 1 | ||||||||
MIRT050152 | EPG5 | ectopic P-granules autophagy protein 5 homolog | 1 | 1 | ||||||||
MIRT050153 | OLA1 | Obg like ATPase 1 | 1 | 1 | ||||||||
MIRT050154 | RRM2 | ribonucleotide reductase regulatory subunit M2 | 1 | 1 | ||||||||
MIRT050155 | BBX | BBX, HMG-box containing | 1 | 1 | ||||||||
MIRT050156 | NUP205 | nucleoporin 205 | 1 | 1 | ||||||||
MIRT050157 | C6orf47 | chromosome 6 open reading frame 47 | 1 | 1 | ||||||||
MIRT050158 | CFLAR | CASP8 and FADD like apoptosis regulator | 1 | 1 | ||||||||
MIRT050159 | SEC31A | SEC31 homolog A, COPII coat complex component | 1 | 1 | ||||||||
MIRT050160 | GLG1 | golgi glycoprotein 1 | 1 | 1 | ||||||||
MIRT050161 | TBC1D16 | TBC1 domain family member 16 | 1 | 1 | ||||||||
MIRT050162 | BTBD9 | BTB domain containing 9 | 1 | 1 | ||||||||
MIRT050163 | RND2 | Rho family GTPase 2 | 1 | 1 | ||||||||
MIRT050164 | TUBG1 | tubulin gamma 1 | 1 | 1 | ||||||||
MIRT050165 | AHRR | aryl-hydrocarbon receptor repressor | 1 | 1 | ||||||||
MIRT050166 | CNTD2 | cyclin N-terminal domain containing 2 | 1 | 1 | ||||||||
MIRT050167 | UBE2A | ubiquitin conjugating enzyme E2 A | 1 | 1 | ||||||||
MIRT050168 | CCDC43 | coiled-coil domain containing 43 | 1 | 1 | ||||||||
MIRT050169 | MSH6 | mutS homolog 6 | 1 | 1 | ||||||||
MIRT050170 | HIST4H4 | histone cluster 4 H4 | 1 | 1 | ||||||||
MIRT050171 | C17orf51 | chromosome 17 open reading frame 51 | 1 | 1 | ||||||||
MIRT050172 | SLC25A30 | solute carrier family 25 member 30 | 1 | 1 | ||||||||
MIRT050173 | USB1 | U6 snRNA biogenesis phosphodiesterase 1 | 1 | 1 | ||||||||
MIRT050174 | MYH10 | myosin heavy chain 10 | 1 | 1 | ||||||||
MIRT050175 | LINS | lines homolog 1 | 1 | 1 | ||||||||
MIRT050176 | UBR4 | ubiquitin protein ligase E3 component n-recognin 4 | 1 | 2 | ||||||||
MIRT050177 | ZNF207 | zinc finger protein 207 | 1 | 1 | ||||||||
MIRT050178 | OGT | O-linked N-acetylglucosamine (GlcNAc) transferase | 1 | 1 | ||||||||
MIRT050179 | TXNL1 | thioredoxin like 1 | 1 | 1 | ||||||||
MIRT050180 | FOXO3 | forkhead box O3 | 1 | 1 | ||||||||
MIRT050181 | COPB1 | coatomer protein complex subunit beta 1 | 1 | 1 | ||||||||
MIRT050182 | FASN | fatty acid synthase | 1 | 1 | ||||||||
MIRT050183 | SARS | seryl-tRNA synthetase | 1 | 1 | ||||||||
MIRT050184 | DDB1 | damage specific DNA binding protein 1 | 1 | 1 | ||||||||
MIRT050185 | PPIA | peptidylprolyl isomerase A | 1 | 1 | ||||||||
MIRT050186 | SLC35A4 | solute carrier family 35 member A4 | 1 | 1 | ||||||||
MIRT050187 | TXNDC11 | thioredoxin domain containing 11 | 1 | 1 | ||||||||
MIRT050188 | HIST2H2AA3 | histone cluster 2 H2A family member a3 | 1 | 1 | ||||||||
MIRT050189 | TRAP1 | TNF receptor associated protein 1 | 1 | 1 | ||||||||
MIRT050190 | SDCBP | syndecan binding protein | 1 | 1 | ||||||||
MIRT050191 | ASCC2 | activating signal cointegrator 1 complex subunit 2 | 1 | 1 | ||||||||
MIRT050192 | KDM5C | lysine demethylase 5C | 1 | 1 | ||||||||
MIRT050193 | DST | dystonin | 1 | 1 | ||||||||
MIRT050194 | CLIC4 | chloride intracellular channel 4 | 1 | 1 | ||||||||
MIRT050195 | WWP2 | WW domain containing E3 ubiquitin protein ligase 2 | 1 | 1 | ||||||||
MIRT050196 | ATP5A1 | ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1, cardiac muscle | 1 | 1 | ||||||||
MIRT050197 | RPL13 | ribosomal protein L13 | 1 | 1 | ||||||||
MIRT050198 | CNBP | CCHC-type zinc finger nucleic acid binding protein | 1 | 1 | ||||||||
MIRT052649 | MCL1 | MCL1, BCL2 family apoptosis regulator | 1 | 1 | ||||||||
MIRT052903 | CHD1 | chromodomain helicase DNA binding protein 1 | 2 | 1 | ||||||||
MIRT053077 | CKS2 | CDC28 protein kinase regulatory subunit 2 | 4 | 3 | ||||||||
MIRT053097 | PRKCD | protein kinase C delta | 4 | 2 | ||||||||
MIRT053251 | BAG4 | BCL2 associated athanogene 4 | 2 | 1 | ||||||||
MIRT053574 | FGF9 | fibroblast growth factor 9 | 3 | 1 | ||||||||
MIRT054062 | ACVR1 | activin A receptor type 1 | 2 | 1 | ||||||||
MIRT054415 | AMACR | alpha-methylacyl-CoA racemase | 3 | 1 | ||||||||
MIRT054432 | ATM | ATM serine/threonine kinase | 3 | 1 | ||||||||
MIRT054484 | RCBTB1 | RCC1 and BTB domain containing protein 1 | 3 | 1 | ||||||||
MIRT054645 | HGF | hepatocyte growth factor | 3 | 1 | ||||||||
MIRT054676 | LIN28B | lin-28 homolog B | 3 | 1 | ||||||||
MIRT054677 | ZCCHC11 | zinc finger CCHC-type containing 11 | 3 | 1 | ||||||||
MIRT060004 | VANGL2 | VANGL planar cell polarity protein 2 | 2 | 4 | ||||||||
MIRT062177 | WNK1 | WNK lysine deficient protein kinase 1 | 2 | 2 | ||||||||
MIRT064905 | ZBTB18 | zinc finger and BTB domain containing 18 | 2 | 6 | ||||||||
MIRT066809 | ZDHHC18 | zinc finger DHHC-type containing 18 | 2 | 3 | ||||||||
MIRT067540 | METAP2 | methionyl aminopeptidase 2 | 1 | 1 | ||||||||
MIRT072092 | CHAC1 | ChaC glutathione specific gamma-glutamylcyclotransferase 1 | 2 | 5 | ||||||||
MIRT072125 | RTF1 | RTF1 homolog, Paf1/RNA polymerase II complex component | 1 | 1 | ||||||||
MIRT073375 | ABHD2 | abhydrolase domain containing 2 | 1 | 1 | ||||||||
MIRT075111 | C16ORF70 | chromosome 16 open reading frame 70 | 2 | 5 | ||||||||
MIRT080605 | PMAIP1 | phorbol-12-myristate-13-acetate-induced protein 1 | 2 | 8 | ||||||||
MIRT085205 | SLC5A3 | solute carrier family 5 member 3 | 2 | 2 | ||||||||
MIRT086007 | UBR3 | ubiquitin protein ligase E3 component n-recognin 3 (putative) | 2 | 2 | ||||||||
MIRT087899 | TNRC6B | trinucleotide repeat containing 6B | 2 | 5 | ||||||||
MIRT089450 | TET3 | tet methylcytosine dioxygenase 3 | 2 | 3 | ||||||||
MIRT089599 | MAT2A | methionine adenosyltransferase 2A | 2 | 11 | ||||||||
MIRT090517 | SLC25A36 | solute carrier family 25 member 36 | 2 | 2 | ||||||||
MIRT097631 | POLR3G | RNA polymerase III subunit G | 1 | 1 | ||||||||
MIRT118410 | DNMT3B | DNA methyltransferase 3 beta | 4 | 1 | ||||||||
MIRT122040 | PRKAA1 | protein kinase AMP-activated catalytic subunit alpha 1 | 1 | 1 | ||||||||
MIRT133477 | EP400 | E1A binding protein p400 | 1 | 1 | ||||||||
MIRT134087 | KLHL42 | kelch like family member 42 | 1 | 1 | ||||||||
MIRT136529 | KPNA6 | karyopherin subunit alpha 6 | 1 | 1 | ||||||||
MIRT137414 | RLF | rearranged L-myc fusion | 1 | 1 | ||||||||
MIRT137577 | RCOR1 | REST corepressor 1 | 1 | 1 | ||||||||
MIRT137722 | EIF5 | eukaryotic translation initiation factor 5 | 1 | 1 | ||||||||
MIRT147274 | KPNA2 | karyopherin subunit alpha 2 | 2 | 10 | ||||||||
MIRT151691 | CHAF1A | chromatin assembly factor 1 subunit A | 1 | 1 | ||||||||
MIRT156734 | FAM126B | family with sequence similarity 126 member B | 2 | 2 | ||||||||
MIRT159273 | RASGRP3 | RAS guanyl releasing protein 3 | 1 | 1 | ||||||||
MIRT166022 | SFXN1 | sideroflexin 1 | 1 | 1 | ||||||||
MIRT166592 | ZSWIM6 | zinc finger SWIM-type containing 6 | 1 | 1 | ||||||||
MIRT168865 | PIM1 | Pim-1 proto-oncogene, serine/threonine kinase | 1 | 1 | ||||||||
MIRT168937 | IRF4 | interferon regulatory factor 4 | 1 | 1 | ||||||||
MIRT169515 | TTK | TTK protein kinase | 1 | 1 | ||||||||
MIRT169560 | PNRC1 | proline rich nuclear receptor coactivator 1 | 1 | 1 | ||||||||
MIRT170138 | KLHDC10 | kelch domain containing 10 | 1 | 1 | ||||||||
MIRT175075 | DCAF10 | DDB1 and CUL4 associated factor 10 | 1 | 1 | ||||||||
MIRT183141 | WEE1 | WEE1 G2 checkpoint kinase | 2 | 1 | ||||||||
MIRT187790 | ANKRD52 | ankyrin repeat domain 52 | 1 | 1 | ||||||||
MIRT191753 | ZNF410 | zinc finger protein 410 | 2 | 2 | ||||||||
MIRT193070 | MAPK6 | mitogen-activated protein kinase 6 | 2 | 2 | ||||||||
MIRT193726 | USP3 | ubiquitin specific peptidase 3 | 1 | 1 | ||||||||
MIRT203408 | DYRK1A | dual specificity tyrosine phosphorylation regulated kinase 1A | 1 | 1 | ||||||||
MIRT206543 | RHOQ | ras homolog family member Q | 2 | 2 | ||||||||
MIRT210981 | TET2 | tet methylcytosine dioxygenase 2 | 1 | 1 | ||||||||
MIRT213685 | PTPN13 | protein tyrosine phosphatase, non-receptor type 13 | 3 | 1 | ||||||||
MIRT215349 | CREBRF | CREB3 regulatory factor | 2 | 2 | ||||||||
MIRT227685 | TBC1D13 | TBC1 domain family member 13 | 2 | 2 | ||||||||
MIRT243962 | MAP1B | microtubule associated protein 1B | 2 | 2 | ||||||||
MIRT250410 | TNRC6A | trinucleotide repeat containing 6A | 2 | 7 | ||||||||
MIRT262152 | OTUD1 | OTU deubiquitinase 1 | 1 | 1 | ||||||||
MIRT277212 | AKIRIN1 | akirin 1 | 2 | 2 | ||||||||
MIRT286389 | NUFIP2 | NUFIP2, FMR1 interacting protein 2 | 2 | 3 | ||||||||
MIRT308147 | PDE12 | phosphodiesterase 12 | 2 | 2 | ||||||||
MIRT319694 | UBN2 | ubinuclein 2 | 2 | 3 | ||||||||
MIRT327077 | KLHL15 | kelch like family member 15 | 2 | 10 | ||||||||
MIRT346489 | SSX2IP | SSX family member 2 interacting protein | 1 | 1 | ||||||||
MIRT438130 | ADAM17 | ADAM metallopeptidase domain 17 | 6 | 3 | ||||||||
MIRT438159 | PIK3C2A | phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2 alpha | 1 | 1 | ||||||||
MIRT438209 | CHEK1 | checkpoint kinase 1 | 2 | 1 | ||||||||
MIRT438638 | TDG | thymine DNA glycosylase | 1 | 1 | ||||||||
MIRT438656 | PHB | prohibitin | 3 | 1 | ||||||||
MIRT444707 | ZNF772 | zinc finger protein 772 | 2 | 2 | ||||||||
MIRT448615 | OTUD4 | OTU deubiquitinase 4 | 2 | 2 | ||||||||
MIRT451358 | UQCR11 | ubiquinol-cytochrome c reductase, complex III subunit XI | 2 | 2 | ||||||||
MIRT457292 | ZBTB45 | zinc finger and BTB domain containing 45 | 2 | 2 | ||||||||
MIRT458763 | CES2 | carboxylesterase 2 | 2 | 2 | ||||||||
MIRT458855 | CD55 | CD55 molecule (Cromer blood group) | 2 | 2 | ||||||||
MIRT460261 | SLC26A2 | solute carrier family 26 member 2 | 2 | 2 | ||||||||
MIRT461702 | ZNF426 | zinc finger protein 426 | 2 | 2 | ||||||||
MIRT465730 | TMTC3 | transmembrane and tetratricopeptide repeat containing 3 | 2 | 2 | ||||||||
MIRT466688 | TAF13 | TATA-box binding protein associated factor 13 | 2 | 4 | ||||||||
MIRT468541 | SERP1 | stress associated endoplasmic reticulum protein 1 | 2 | 2 | ||||||||
MIRT468809 | SACS | sacsin molecular chaperone | 2 | 11 | ||||||||
MIRT470198 | PSAT1 | phosphoserine aminotransferase 1 | 2 | 6 | ||||||||
MIRT476009 | GTF2A1 | general transcription factor IIA subunit 1 | 2 | 8 | ||||||||
MIRT477228 | ETF1 | eukaryotic translation termination factor 1 | 2 | 4 | ||||||||
MIRT477752 | EDEM3 | ER degradation enhancing alpha-mannosidase like protein 3 | 2 | 2 | ||||||||
MIRT478346 | DDIT4 | DNA damage inducible transcript 4 | 2 | 2 | ||||||||
MIRT478525 | CTNS | cystinosin, lysosomal cystine transporter | 2 | 2 | ||||||||
MIRT480793 | BLOC1S2 | biogenesis of lysosomal organelles complex 1 subunit 2 | 2 | 6 | ||||||||
MIRT482242 | AGPAT5 | 1-acylglycerol-3-phosphate O-acyltransferase 5 | 2 | 2 | ||||||||
MIRT486465 | MDM2 | MDM2 proto-oncogene | 2 | 10 | ||||||||
MIRT487561 | LOXL2 | lysyl oxidase like 2 | 2 | 2 | ||||||||
MIRT498663 | ZNF664 | zinc finger protein 664 | 2 | 8 | ||||||||
MIRT499509 | RNF6 | ring finger protein 6 | 2 | 6 | ||||||||
MIRT502456 | FRAT2 | FRAT2, WNT signaling pathway regulator | 2 | 6 | ||||||||
MIRT502713 | CREBZF | CREB/ATF bZIP transcription factor | 2 | 6 | ||||||||
MIRT502853 | CHEK2 | checkpoint kinase 2 | 2 | 6 | ||||||||
MIRT507558 | DEPDC1 | DEP domain containing 1 | 2 | 6 | ||||||||
MIRT524742 | BRCA1 | BRCA1, DNA repair associated | 2 | 2 | ||||||||
MIRT527178 | LRRTM4 | leucine rich repeat transmembrane neuronal 4 | 2 | 2 | ||||||||
MIRT527909 | B3GALT5 | beta-1,3-galactosyltransferase 5 | 2 | 2 | ||||||||
MIRT532895 | ZNF451 | zinc finger protein 451 | 2 | 2 | ||||||||
MIRT533588 | TOB1 | transducer of ERBB2, 1 | 2 | 7 | ||||||||
MIRT534368 | SETD8 | lysine methyltransferase 5A | 2 | 4 | ||||||||
MIRT535060 | PPP2R5D | protein phosphatase 2 regulatory subunit B'delta | 2 | 4 | ||||||||
MIRT536204 | MAD2L1 | mitotic arrest deficient 2 like 1 | 2 | 2 | ||||||||
MIRT537233 | GALNT3 | polypeptide N-acetylgalactosaminyltransferase 3 | 2 | 2 | ||||||||
MIRT539774 | KIAA0408 | KIAA0408 | 2 | 6 | ||||||||
MIRT540867 | ZBTB24 | zinc finger and BTB domain containing 24 | 2 | 2 | ||||||||
MIRT541042 | SOGA3 | SOGA family member 3 | 2 | 6 | ||||||||
MIRT541350 | DDX3X | DEAD-box helicase 3, X-linked | 2 | 2 | ||||||||
MIRT544949 | TUB | tubby bipartite transcription factor | 2 | 4 | ||||||||
MIRT545809 | ZNF608 | zinc finger protein 608 | 2 | 2 | ||||||||
MIRT547008 | PPP1R15B | protein phosphatase 1 regulatory subunit 15B | 2 | 2 | ||||||||
MIRT551188 | EPB41L3 | erythrocyte membrane protein band 4.1 like 3 | 2 | 2 | ||||||||
MIRT551973 | TMEM19 | transmembrane protein 19 | 2 | 2 | ||||||||
MIRT552044 | ALG1 | ALG1, chitobiosyldiphosphodolichol beta-mannosyltransferase | 2 | 2 | ||||||||
MIRT553325 | TSC22D2 | TSC22 domain family member 2 | 2 | 2 | ||||||||
MIRT554367 | SFPQ | splicing factor proline and glutamine rich | 2 | 2 | ||||||||
MIRT555741 | PDCD10 | programmed cell death 10 | 2 | 2 | ||||||||
MIRT556346 | MAN2A1 | mannosidase alpha class 2A member 1 | 2 | 3 | ||||||||
MIRT560389 | TMEM254 | transmembrane protein 254 | 2 | 2 | ||||||||
MIRT560465 | SMIM9 | small integral membrane protein 9 | 2 | 2 | ||||||||
MIRT561122 | ATP2B1 | ATPase plasma membrane Ca2+ transporting 1 | 2 | 2 | ||||||||
MIRT562626 | ARNTL2 | aryl hydrocarbon receptor nuclear translocator like 2 | 2 | 2 | ||||||||
MIRT564084 | NSA2 | NSA2, ribosome biogenesis homolog | 2 | 2 | ||||||||
MIRT564207 | SDE2 | SDE2 telomere maintenance homolog | 2 | 2 | ||||||||
MIRT565191 | TSHZ1 | teashirt zinc finger homeobox 1 | 2 | 2 | ||||||||
MIRT567887 | CSTF2 | cleavage stimulation factor subunit 2 | 2 | 2 | ||||||||
MIRT568259 | BMP2K | BMP2 inducible kinase | 2 | 2 | ||||||||
MIRT568505 | ARF1 | ADP ribosylation factor 1 | 2 | 2 | ||||||||
MIRT572178 | CDV3 | CDV3 homolog | 2 | 2 | ||||||||
MIRT574711 | HAUS8 | HAUS augmin like complex subunit 8 | 2 | 3 | ||||||||
MIRT610597 | NUS1 | NUS1 dehydrodolichyl diphosphate synthase subunit | 2 | 2 | ||||||||
MIRT614445 | WDR92 | WD repeat domain 92 | 2 | 2 | ||||||||
MIRT615442 | FAXC | failed axon connections homolog | 2 | 2 | ||||||||
MIRT618503 | HSPD1 | heat shock protein family D (Hsp60) member 1 | 2 | 2 | ||||||||
MIRT618903 | CDK9 | cyclin dependent kinase 9 | 2 | 2 | ||||||||
MIRT620083 | TNFAIP8L1 | TNF alpha induced protein 8 like 1 | 2 | 2 | ||||||||
MIRT620286 | GLTP | glycolipid transfer protein | 2 | 2 | ||||||||
MIRT622464 | RNF11 | ring finger protein 11 | 2 | 2 | ||||||||
MIRT624644 | ASXL3 | additional sex combs like 3, transcriptional regulator | 2 | 2 | ||||||||
MIRT624697 | AQR | aquarius intron-binding spliceosomal factor | 2 | 2 | ||||||||
MIRT625256 | ZNF566 | zinc finger protein 566 | 2 | 2 | ||||||||
MIRT628258 | EFCAB14 | EF-hand calcium binding domain 14 | 2 | 2 | ||||||||
MIRT628872 | FAM177A1 | family with sequence similarity 177 member A1 | 2 | 2 | ||||||||
MIRT630720 | FPR1 | formyl peptide receptor 1 | 2 | 2 | ||||||||
MIRT631887 | SLFN13 | schlafen family member 13 | 2 | 2 | ||||||||
MIRT637716 | MYOZ3 | myozenin 3 | 2 | 2 | ||||||||
MIRT639892 | SSR3 | signal sequence receptor subunit 3 | 2 | 2 | ||||||||
MIRT642506 | ORC6 | origin recognition complex subunit 6 | 2 | 2 | ||||||||
MIRT644723 | SEPT14 | septin 14 | 2 | 2 | ||||||||
MIRT645341 | AGTPBP1 | ATP/GTP binding protein 1 | 2 | 2 | ||||||||
MIRT648886 | TUBGCP5 | tubulin gamma complex associated protein 5 | 2 | 2 | ||||||||
MIRT653565 | SLC35B3 | solute carrier family 35 member B3 | 2 | 2 | ||||||||
MIRT656095 | MTA3 | metastasis associated 1 family member 3 | 2 | 2 | ||||||||
MIRT660204 | BMPR1A | bone morphogenetic protein receptor type 1A | 2 | 2 | ||||||||
MIRT660753 | ALDH6A1 | aldehyde dehydrogenase 6 family member A1 | 2 | 2 | ||||||||
MIRT661379 | RHCG | Rh family C glycoprotein | 2 | 2 | ||||||||
MIRT662310 | ADM2 | adrenomedullin 2 | 2 | 2 | ||||||||
MIRT662628 | MCM8 | minichromosome maintenance 8 homologous recombination repair factor | 2 | 2 | ||||||||
MIRT663688 | ZNF347 | zinc finger protein 347 | 2 | 2 | ||||||||
MIRT665109 | FKTN | fukutin | 2 | 2 | ||||||||
MIRT665262 | ZKSCAN1 | zinc finger with KRAB and SCAN domains 1 | 2 | 2 | ||||||||
MIRT666273 | SLC31A1 | solute carrier family 31 member 1 | 2 | 2 | ||||||||
MIRT666646 | RBM48 | RNA binding motif protein 48 | 2 | 2 | ||||||||
MIRT667511 | LUC7L2 | LUC7 like 2, pre-mRNA splicing factor | 2 | 2 | ||||||||
MIRT669228 | C7orf55-LUC7L2 | C7orf55-LUC7L2 readthrough | 2 | 2 | ||||||||
MIRT669271 | C1orf50 | chromosome 1 open reading frame 50 | 2 | 2 | ||||||||
MIRT671783 | RGS17 | regulator of G protein signaling 17 | 2 | 2 | ||||||||
MIRT672379 | RPL37 | ribosomal protein L37 | 2 | 2 | ||||||||
MIRT673464 | KDELR1 | KDEL endoplasmic reticulum protein retention receptor 1 | 2 | 2 | ||||||||
MIRT673600 | HPSE | heparanase | 2 | 4 | ||||||||
MIRT676269 | NWD1 | NACHT and WD repeat domain containing 1 | 2 | 2 | ||||||||
MIRT676514 | RNF216 | ring finger protein 216 | 2 | 2 | ||||||||
MIRT676653 | LRRC27 | leucine rich repeat containing 27 | 2 | 2 | ||||||||
MIRT677335 | PHAX | phosphorylated adaptor for RNA export | 2 | 2 | ||||||||
MIRT677523 | OCIAD2 | OCIA domain containing 2 | 2 | 2 | ||||||||
MIRT677548 | C19orf52 | translocase of inner mitochondrial membrane 29 | 2 | 2 | ||||||||
MIRT677724 | SSR1 | signal sequence receptor subunit 1 | 2 | 2 | ||||||||
MIRT677800 | PNPLA3 | patatin like phospholipase domain containing 3 | 2 | 2 | ||||||||
MIRT677885 | DCP1A | decapping mRNA 1A | 2 | 2 | ||||||||
MIRT678104 | MICA | MHC class I polypeptide-related sequence A | 2 | 2 | ||||||||
MIRT678431 | PDE4C | phosphodiesterase 4C | 2 | 2 | ||||||||
MIRT678488 | ARHGEF39 | Rho guanine nucleotide exchange factor 39 | 2 | 2 | ||||||||
MIRT678898 | TTLL12 | tubulin tyrosine ligase like 12 | 2 | 2 | ||||||||
MIRT679296 | SSBP2 | single stranded DNA binding protein 2 | 2 | 2 | ||||||||
MIRT679572 | UGGT1 | UDP-glucose glycoprotein glucosyltransferase 1 | 2 | 2 | ||||||||
MIRT680003 | ZNF860 | zinc finger protein 860 | 2 | 2 | ||||||||
MIRT694963 | PLAC8 | placenta specific 8 | 2 | 2 | ||||||||
MIRT697861 | UBE2H | ubiquitin conjugating enzyme E2 H | 2 | 2 | ||||||||
MIRT698310 | TMEM2 | transmembrane protein 2 | 2 | 2 | ||||||||
MIRT701712 | MTMR12 | myotubularin related protein 12 | 2 | 2 | ||||||||
MIRT705964 | ACBD5 | acyl-CoA binding domain containing 5 | 2 | 2 | ||||||||
MIRT714342 | DIP2A | disco interacting protein 2 homolog A | 2 | 2 | ||||||||
MIRT715309 | POLR2E | RNA polymerase II subunit E | 2 | 2 | ||||||||
MIRT717477 | PDE4DIP | phosphodiesterase 4D interacting protein | 2 | 2 | ||||||||
MIRT719604 | PRKX | protein kinase, X-linked | 2 | 2 | ||||||||
MIRT724483 | CSNK1A1 | casein kinase 1 alpha 1 | 2 | 2 | ||||||||
MIRT726021 | ZNF680 | zinc finger protein 680 | 1 | 1 | ||||||||
MIRT726041 | ZNF254 | zinc finger protein 254 | 1 | 1 | ||||||||
MIRT726096 | WNT5A | Wnt family member 5A | 1 | 1 | ||||||||
MIRT726288 | TMEM30A | transmembrane protein 30A | 1 | 1 | ||||||||
MIRT726312 | TMCC1 | transmembrane and coiled-coil domain family 1 | 1 | 1 | ||||||||
MIRT726446 | SSH2 | slingshot protein phosphatase 2 | 1 | 1 | ||||||||
MIRT726486 | SMEK1 | protein phosphatase 4 regulatory subunit 3A | 1 | 1 | ||||||||
MIRT726514 | SLC7A1 | solute carrier family 7 member 1 | 1 | 1 | ||||||||
MIRT726535 | SLC38A2 | solute carrier family 38 member 2 | 1 | 1 | ||||||||
MIRT726657 | SASS6 | SAS-6 centriolar assembly protein | 1 | 1 | ||||||||
MIRT726778 | REEP4 | receptor accessory protein 4 | 1 | 1 | ||||||||
MIRT726937 | PIK3R4 | phosphoinositide-3-kinase regulatory subunit 4 | 1 | 1 | ||||||||
MIRT726989 | PDE4B | phosphodiesterase 4B | 1 | 1 | ||||||||
MIRT727060 | NUDT19 | nudix hydrolase 19 | 1 | 1 | ||||||||
MIRT727062 | NUCKS1 | nuclear casein kinase and cyclin dependent kinase substrate 1 | 1 | 1 | ||||||||
MIRT727485 | HSPA13 | heat shock protein family A (Hsp70) member 13 | 1 | 1 | ||||||||
MIRT727488 | HNRNPA0 | heterogeneous nuclear ribonucleoprotein A0 | 1 | 1 | ||||||||
MIRT727508 | HECTD3 | HECT domain E3 ubiquitin protein ligase 3 | 1 | 1 | ||||||||
MIRT727675 | FBXO11 | F-box protein 11 | 1 | 1 | ||||||||
MIRT727780 | ELAVL2 | ELAV like RNA binding protein 2 | 1 | 1 | ||||||||
MIRT727786 | EIF4G2 | eukaryotic translation initiation factor 4 gamma 2 | 1 | 1 | ||||||||
MIRT727793 | EHD1 | EH domain containing 1 | 1 | 1 | ||||||||
MIRT727863 | DNMBP | dynamin binding protein | 1 | 1 | ||||||||
MIRT727903 | DCTN4 | dynactin subunit 4 | 1 | 1 | ||||||||
MIRT727941 | CPSF2 | cleavage and polyadenylation specific factor 2 | 1 | 1 | ||||||||
MIRT727966 | COX5A | cytochrome c oxidase subunit 5A | 1 | 1 | ||||||||
MIRT728000 | CHORDC1 | cysteine and histidine rich domain containing 1 | 3 | 1 | ||||||||
MIRT728203 | BID | BH3 interacting domain death agonist | 1 | 1 | ||||||||
MIRT728213 | BCL7B | BCL tumor suppressor 7B | 1 | 1 | ||||||||
MIRT728306 | ARPP19 | cAMP regulated phosphoprotein 19 | 1 | 1 | ||||||||
MIRT728331 | AP1S3 | adaptor related protein complex 1 sigma 3 subunit | 1 | 1 | ||||||||
MIRT728396 | ACSL3 | acyl-CoA synthetase long chain family member 3 | 1 | 1 | ||||||||
MIRT731168 | ITGA5 | integrin subunit alpha 5 | 2 | 1 | ||||||||
MIRT731390 | DUSP4 | dual specificity phosphatase 4 | 3 | 1 | ||||||||
MIRT732062 | NRAS | NRAS proto-oncogene, GTPase | 3 | 1 | ||||||||
MIRT732063 | E2F2 | E2F transcription factor 2 | 3 | 1 | ||||||||
MIRT732182 | PTGS2 | prostaglandin-endoperoxide synthase 2 | 6 | 2 | ||||||||
MIRT732280 | JAG1 | jagged 1 | 3 | 1 | ||||||||
MIRT732490 | NRP1 | neuropilin 1 | 1 | 0 | ||||||||
MIRT732621 | MS | multiple sclerosis | 1 | 0 | ||||||||
MIRT733344 | CREB1 | cAMP responsive element binding protein 1 | 4 | 0 | ||||||||
MIRT733365 | ADIPOQ | adiponectin, C1Q and collagen domain containing | 1 | 0 | ||||||||
MIRT733699 | NORAD | non-coding RNA activated by DNA damage | 2 | 0 | ||||||||
MIRT733700 | UBE3A | ubiquitin protein ligase E3A | 2 | 0 | ||||||||
MIRT733702 | CCND1 | cyclin D1 | 2 | 0 | ||||||||
MIRT733703 | TGFBR1 | transforming growth factor beta receptor 1 | 2 | 0 | ||||||||
MIRT734551 | SHC4 | SHC adaptor protein 4 | 2 | 0 | ||||||||
MIRT734552 | PFDN4 | prefoldin subunit 4 | 2 | 0 | ||||||||
MIRT734721 | CD38 | CD38 molecule | 3 | 0 | ||||||||
MIRT736775 | MAP2 | microtubule associated protein 2 | 2 | 0 | ||||||||
MIRT736838 | USP35 | ubiquitin specific peptidase 35 | 2 | 0 | ||||||||
MIRT736852 | EIF2A | eukaryotic translation initiation factor 2A | 2 | 0 | ||||||||
MIRT737078 | ULK1 | unc-51 like autophagy activating kinase 1 | 3 | 0 | ||||||||
MIRT737079 | SNHG6 | small nucleolar RNA host gene 6 | 3 | 0 | ||||||||
MIRT737091 | ULK2 | unc-51 like autophagy activating kinase 2 | 3 | 0 | ||||||||
MIRT737491 | FLI1 | Fli-1 proto-oncogene, ETS transcription factor | 2 | 0 | ||||||||
MIRT755414 | NEK6 | NIMA related kinase 6 | 3 | 1 | ||||||||
MIRT755509 | ICAM1 | intercellular adhesion molecule 1 | 1 | 1 | ||||||||
MIRT755687 | RUNX2 | runt related transcription factor 2 | 3 | 1 | ||||||||
MIRT755688 | SPP1 | secreted phosphoprotein 1 | 3 | 1 | ||||||||
MIRT755689 | ALPL | alkaline phosphatase, liver/bone/kidney | 3 | 1 | ||||||||
MIRT756239 | NEAT1 | nuclear paraspeckle assembly transcript 1 (non-protein coding) | 2 | 1 | ||||||||
MIRT756240 | FANCE | Fanconi anemia complementation group E | 3 | 1 | ||||||||
MIRT756287 | ZBTB7C | zinc finger and BTB domain containing 7C | 3 | 1 | ||||||||
MIRT756352 | PLCB1 | phospholipase C beta 1 | 3 | 1 |
miRNA-Drug Associations | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
miRNA-Drug Resistance Associations | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|