pre-miRNA Information | |
---|---|
pre-miRNA | hsa-mir-210 |
Genomic Coordinates | chr11: 568089 - 568198 |
Synonyms | MIRN210, mir-210, MIR210 |
Description | Homo sapiens miR-210 stem-loop |
Comment | This human miRNA was predicted by computational methods using conservation with mouse and Fugu rubripes sequences . |
RNA Secondary Structure | |
Associated Diseases |
Mature miRNA Information | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mature miRNA | hsa-miR-210-3p | |||||||||||||||||||||||||||||||||||||||
Sequence | 66| CUGUGCGUGUGACAGCGGCUGA |87 | |||||||||||||||||||||||||||||||||||||||
Evidence | Experimental | |||||||||||||||||||||||||||||||||||||||
Experiments | Cloned | |||||||||||||||||||||||||||||||||||||||
Editing Events in miRNAs |
|
|||||||||||||||||||||||||||||||||||||||
SNPs in miRNA |
|
|||||||||||||||||||||||||||||||||||||||
Putative Targets |
miRNA Expression profile | |
---|---|
Human miRNA Tissue Atlas | |
miRNAs in Extracellular Vesicles |
|
Circulating MicroRNA Expression Profiling |
Biomarker Information |
|
---|
Gene Information | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gene Symbol | EFNA3 | ||||||||||||||||||||
Synonyms | EFL2, EPLG3, Ehk1-L, LERK3 | ||||||||||||||||||||
Description | ephrin A3 | ||||||||||||||||||||
Transcript | NM_004952 | ||||||||||||||||||||
Expression | |||||||||||||||||||||
Putative miRNA Targets on EFNA3 | |||||||||||||||||||||
3'UTR of EFNA3 (miRNA target sites are highlighted) |
>EFNA3|NM_004952|3'UTR 1 CTCTGCCCCCTCCCCTGGGGGGGGAGAGATGGGGCGGGGCTTGGAAGGAGCAGGGAGCCTTTGGCCTCTCCAAGGGAAGC 81 CTAGTGGGCCTAGACCCCTCCTCCCATGGCTAGAAGTGGGGCCTGCACCATACATCTGTGTCCGCCCCCTCTACCCCTTC 161 CCCCCACGTAGGGCACTGTAGTGGACCAAGCACGGGGACAGCCATGGGTCCCGGGCGGCCTTGTGGCTCTGGTAATGTTT 241 GGTACCAAACTTGGGGGCCAAAAAGGGCAGTGCTCAGGACTCCCTGGCCCCTGGTACCTTTCCCTGACTCCTGGTGCCCT 321 CTCCCTTTGTCCCCCCAGAGAGACATATGCCCCCAGAGAGAGCAAATCGAAGCGTGGGAGGCACCCCCATTGCTCTCCTC 401 CAGGGGCAGAACATGGGGAGGGGACTAGATGGGCAAGGGGCAGCACTGCCTGCTGCTTCCTTCCCCTGTTTACAGCAATA 481 AGCACGTCCTCCTCCCCCACTCCCACTTCCAGGATTGTGGTTTGGATTGAAACCAAGTTTACAAGTAGACACCCCTGGGG 561 GGGCGGGCAGTGGACAAGGATGGCAAGGGGTGGGCATTGGGGTGCCAGGCAGGCATGTACAGACTCTATATCTCTATATA 641 TAATGTACAGACAGACAGAGTCCCTTCCCTCTTTAACCCCCTGACCTTTCTTGACTTCCCCTTCAGCTTCAGACCCCTTC 721 CCCACCAGGCTAGGCCCCCCACACCTGGGGGACCCCCTGGCCCCTCTTTTGTCTTCTGTGAAGACAGGACCTATGCAACG 801 CACAGACACTTTTGGAGACCGTAAAACAACAACGCCCCCTCCCTTCCAGCCCTGAGCCGGGAACCATCTCCCAGGACCTT 881 GCCCTGCTCACCCTATGTGGTCCCACCTATCCTCCTGGGCCTTTTTCAAGTGCTTTGGCTGTGACTTTCATACTCTGCTC 961 TTAGTCTAAAAAAAATAAACTGGAGATAAAAATAA Target sites
Provided by authors
Predicted by miRanda
DRVs
SNPs
DRVs & SNPs
|
||||||||||||||||||||
miRNA-target interactions (Predicted by miRanda) |
|
||||||||||||||||||||
DRVs in gene 3'UTRs | |||||||||||||||||||||
SNPs in gene 3'UTRs |
Experimental Support 1 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | HUVEC , U2OS |
Disease | 1944.0; |
Tools used in this research | miRanda , TargetScan , PicTar , miRBase Target Database |
Original Description (Extracted from the article) |
...
"miR-210 inhibits EFNA3 expression directly.//We determined that one relevant target of miR-210 in hypoxia was Ephrin-A3 since miR-210 was necessary and sufficient to down-modulate its expression. Moreover
... - Fasanaro P; D'Alessandra Y; Di Stefano V; et al., 2008, The Journal of biological chemistry. |
Article |
- Fasanaro P; D'Alessandra Y; Di Stefano V; et al. - The Journal of biological chemistry, 2008
MicroRNAs (miRNAs) are small non-protein-coding RNAs that function as negative gene expression regulators. In the present study, we investigated miRNAs role in endothelial cell response to hypoxia. We found that the expression of miR-210 progressively increased upon exposure to hypoxia. miR-210 overexpression in normoxic endothelial cells stimulated the formation of capillary-like structures on Matrigel and vascular endothelial growth factor-driven cell migration. Conversely, miR-210 blockade via anti-miRNA transfection inhibited the formation of capillary-like structures stimulated by hypoxia and decreased cell migration in response to vascular endothelial growth factor. miR-210 overexpression did not affect endothelial cell growth in both normoxia and hypoxia. However, anti-miR-210 transfection inhibited cell growth and induced apoptosis, in both normoxia and hypoxia. We determined that one relevant target of miR-210 in hypoxia was Ephrin-A3 since miR-210 was necessary and sufficient to down-modulate its expression. Moreover, luciferase reporter assays showed that Ephrin-A3 was a direct target of miR-210. Ephrin-A3 modulation by miR-210 had significant functional consequences; indeed, the expression of an Ephrin-A3 allele that is not targeted by miR-210 prevented miR-210-mediated stimulation of both tubulogenesis and chemotaxis. We conclude that miR-210 up-regulation is a crucial element of endothelial cell response to hypoxia, affecting cell survival, migration, and differentiation.
LinkOut: [PMID: 18417479]
|
Experimental Support 2 for Functional miRNA-Target Interaction | |||||||
---|---|---|---|---|---|---|---|
miRNA:Target | ---- | ||||||
Validation Method |
|
||||||
Conditions | 293T | ||||||
Disease | MIMAT0000267 | ||||||
Location of target site | 3'UTR | ||||||
Tools used in this research | miRanda , TargetScan , PicTar | ||||||
Original Description (Extracted from the article) |
...
"Furthermore
... - Pulkkinen K; Malm T; Turunen M; Koistinaho et al., 2008, FEBS letters. |
||||||
miRNA-target interactions (Provided by authors) |
|
||||||
Article |
- Pulkkinen K; Malm T; Turunen M; Koistinaho et al. - FEBS letters, 2008
Shortage of oxygen is one of the prime stress conditions in tissues. In this study, we looked for microRNAs expressed during hypoxia and showed that miR-210 expression was upregulated in response to hypoxia in vitro and in vivo. An active form of the HIF-1alpha induced the expression of miR-210, showing the involvement of the HIF-1 signaling pathway in miR-210 gene transcription. Furthermore, miR-210 was shown to bind to the predicted target sites of ephrin-A3 or neuronal pentraxin 1, causing repression in luciferase reporter activity. Contrary to the microRNA-mediated repression hypothesis, ephrin-A3 was expressed at very high levels in post-ischemic mouse hippocampus in vivo. Thus, the regulatory effects of miR-210 on its targets in vivo need to be further characterized.
LinkOut: [PMID: 18539147]
|
Experimental Support 3 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | MCF7 , HEK293 |
Location of target site | 3'UTR |
Tools used in this research | miRanda , PicTar , TargetScan |
Original Description (Extracted from the article) |
...
Our results show the 3'UTR of EFNA3 is regulated by miR-210 and inhibition of miR-210 reduces EFNA3 pro- tein levels as well as clonogenic cell survival of MCF-7 cells.//
... - Greither T; Grochola LF; Udelnow A; et al., 2010, International journal of cancer. |
Article |
- Greither T; Grochola LF; Udelnow A; et al. - International journal of cancer, 2010
Pancreatic cancer is the eighth most common cancer and has an overall 5-year survival rate lower than 10%. Because of their ability to regulate gene expression, microRNAs can act as oncogenes or tumor-suppressor genes and so have garnered interest as possible prognostic and therapeutic markers during the last decade. However, the prognostic value of microRNA expression in pancreatic cancer has not been thoroughly investigated. We measured the levels of miR-155, miR-203, miR-210, miR-216, miR-217 and miR-222 by quantitative RT-PCR in a cohort of 56 microdissected pancreatic ductal adenocarcinomas (PDAC). These microRNAs were chosen as they had previously been shown to be differentially expressed in pancreatic tumors compared to normal tissues. The possible association of microRNA expression and patients' survival was examined using multivariate Cox's regression hazard analyses. Interestingly, significant correlations between elevated microRNA expression and overall survival were observed for miR-155 (RR = 2.50; p = 0.005), miR-203 (RR = 2.21; p = 0.017), miR-210 (RR = 2.48; p = 0.005) and miR-222 (RR = 2.05; p = 0.035). Furthermore, tumors from patients demonstrating elevated expression levels of all 4 microRNAs possessed a 6.2-fold increased risk of tumor-related death compared to patients whose tumors showed a lower expression of these microRNAs. This study provides the first evidence for an oncogenic activity of miR-155, miR-203, miR-210 and miR-222 in the development of pancreatic cancer as has been reported for other tumor types. Furthermore, the putative target genes for these microRNAs suggest a complex signaling network that can affect PDAC tumorigenesis and tumor progression.
LinkOut: [PMID: 19551852]
|
Experimental Support 4 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | HEK293 , HUVEC , MCF7 |
Location of target site | 3'UTR |
Tools used in this research | Literature survey |
Original Description (Extracted from the article) |
...
"EFNA3
... - Fasanaro P; Greco S; Lorenzi M; Pescatori et al., 2009, The Journal of biological chemistry. |
Article |
- Fasanaro P; Greco S; Lorenzi M; Pescatori et al. - The Journal of biological chemistry, 2009
miR-210 is a key player of cell response to hypoxia, modulating cell survival, VEGF-driven endothelial cell migration, and the ability of endothelial cells to form capillary-like structures. A crucial step in understanding microRNA (miRNA) function is the identification of their targets. However, only few miR-210 targets have been identified to date. Here, we describe an integrated strategy for large-scale identification of new miR-210 targets by combining transcriptomics and proteomics with bioinformatic approaches. To experimentally validate candidate targets, the RNA-induced silencing complex (RISC) loaded with miR-210 was purified by immunoprecipitation along with its mRNA targets. The complex was significantly enriched in mRNAs of 31 candidate targets, such as BDNF, GPD1L, ISCU, NCAM, and the non-coding RNA Xist. A subset of the newly identified targets was further confirmed by 3'-untranslated region (UTR) reporter assays, and hypoxia induced down-modulation of their expression was rescued blocking miR-210, providing support for the approach validity. In the case of 9 targets, such as PTPN1 and P4HB, miR-210 seed-pairing sequences localized in the coding sequence or in the 5'-UTR, in line with recent data extending miRNA targeting beyond the "classic" 3'-UTR recognition. Finally, Gene Ontology analysis of the targets highlights known miR-210 impact on cell cycle regulation and differentiation, and predicts a new role of this miRNA in RNA processing, DNA binding, development, membrane trafficking, and amino acid catabolism. Given the complexity of miRNA actions, we view such a multiprong approach as useful to adequately describe the multiple pathways regulated by miR-210 during physiopathological processes.
LinkOut: [PMID: 19826008]
|
Experimental Support 5 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | Jiyoye |
Tools used in this research | TargetScan |
Original Description (Extracted from the article) |
...
HITS-CLIP data was present in Supplenentary. RNA binding protein: AGO2.
... - Riley KJ; Rabinowitz GS; Yario TA; Luna JM; et al., 2012, The EMBO journal. |
Article |
- Riley KJ; Rabinowitz GS; Yario TA; Luna JM; et al. - The EMBO journal, 2012
Epstein-Barr virus (EBV) controls gene expression to transform human B cells and maintain viral latency. High-throughput sequencing and crosslinking immunoprecipitation (HITS-CLIP) identified mRNA targets of 44 EBV and 310 human microRNAs (miRNAs) in Jijoye (Latency III) EBV-transformed B cells. While 25% of total cellular miRNAs are viral, only three viral mRNAs, all latent transcripts, are targeted. Thus, miRNAs do not control the latent/lytic switch by targeting EBV lytic genes. Unexpectedly, 90% of the 1664 human 3'-untranslated regions targeted by the 12 most abundant EBV miRNAs are also targeted by human miRNAs via distinct binding sites. Half of these are targets of the oncogenic miR-17 approximately 92 miRNA cluster and associated families, including mRNAs that regulate transcription, apoptosis, Wnt signalling, and the cell cycle. Reporter assays confirmed the functionality of several EBV and miR-17 family miRNA-binding sites in EBV latent membrane protein 1 (LMP1), EBV BHRF1, and host CAPRIN2 mRNAs. Our extensive list of EBV and human miRNA targets implicates miRNAs in the control of EBV latency and illuminates viral miRNA function in general.
LinkOut: [PMID: 22473208]
|
Experimental Support 6 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | HMEC1 |
Location of target site | 3'UTR |
Tools used in this research | miRanda , PicTar , TargetScan |
Original Description (Extracted from the article) |
...
WSS25 downregulated Dicer and miR-210 expression and upregulated the expression of the miR-210 target gene Ephrin-A3. Ephrin-A3 is a functional target of miR-210 in HMEC-1 cells
... - Xiao F; Qiu H; Zhou L; Shen X; Yang L; Ding K, 2013, Glycobiology. |
Article |
- Xiao F; Qiu H; Zhou L; Shen X; Yang L; Ding K - Glycobiology, 2013
WSS25 is a sulfated polysaccharide that inhibits angiogenesis. However, the mechanism underlying the regulation of angiogenesis by WSS25 is not well understood. Using microRNA (miRNA) microarray analysis, a total of 25 miRNAs were found to be upregulated and 12 (including miR-210) downregulated by WSS25 in human microvascular endothelial cells (HMEC-1). Interestingly, Dicer, a key enzyme for miRNA biosynthesis, was downregulated by WSS25 in HMEC-1 cells. Further studies indicated that HMEC-1 cell tube formation and miR-210 expression were suppressed while Ephrin-A3 expression was enhanced by the silencing of Dicer. In contrast, HMEC-1 cell tube formation and miR-210 expression were induced while Ephrin-A3 expression was suppressed by Dicer overexpression. Moreover, miR-210 was downregulated while Ephrin-A3 was upregulated by WSS25 in HMEC-1 cells. HMEC-1 cell migration and tube formation were arrested, while Ephrin-A3 expression was augmented by anti-miR-210. In addition, HMEC-1 cell tube formation was significantly attenuated or augmented when Ephrin-A3 was overexpressed or silenced, respectively. Nevertheless, the tube formation blocked by WSS25 could be partially rescued by manipulation of Dicer, miR-210 and Ephrin-A3. These results suggest a new pathway whereby WSS25 inhibits angiogenesis via suppression of Dicer, leading to downregulation of miR-210 and upregulation of Ephrin-A3.
LinkOut: [PMID: 23322395]
|
Experimental Support 7 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | SMMC-7721 , 293 |
Tools used in this research | unspecified |
Original Description (Extracted from the article) |
...
"To investigate the mechanism underlying the knockdown of miR-210 mediated tumor growth delay
... - Yang W; Wei J; Sun T; Liu F, 2013, Radiation oncology (London, England). |
Article |
- Yang W; Wei J; Sun T; Liu F - Radiation oncology (London, England), 2013
BACKGROUND: Solid tumors usually develop local hypoxia, which renders them resilient to radiotherapy. MiR-210 is the most consistently and robustly induced miRNA under hypoxia and functions as a micro-controller of a wide range of cellular responses to hypoxia. Hence, it is important to investigate the effect of knockdown of miR-210 in tumorigenesis and evaluate the efficacy of knockdown of miR-210 in combination with radiotherapy on human tumor xenograft in nude mice. MATERIALS AND METHODS: SMMC-7721 Cells with stable integration of the anti-sense miR-210 were generated through lentiviral-mediated gene transfer and were subcutaneously implanted into nude mice. Mice were monitored for tumor growth and survival after radiotherapy. MiR-210 expression in tumor tissues was assessed by real-time Reverse transcription-Polymerase Chain Reaction (RT-PCR). Protein expression of HIF-1alpha and miR-210 targeted genes in human hepatoma xenograft was assessed by Western blot. Tumors were analyzed for proliferation, apoptosis, and angiogenesis biomarkers by immunohistochemistry staining. RESULTS: Tumor growth was delayed in miR-210 downregulated xenograft. Knockdown of miR-210 increased protein expression of miR-210 targeted genes, but decreased HIF-1alpha protein in hepatoma xenograft. Knockdown of miR-210 in combination with radiotherapy is more effective than radiotherapy alone or miR-210 knockdown therapy alone in suppressing tumor growth and extending survival duration. Combined therapy decreased Ki-67-positive cells and CD31-positive cells and increased TUNEL-positive cells in tumor xenograft. CONCLUSIONS: Knockdown of miR-210 in combination with radiotherapy showed an enhanced anti-tumor effect on human hepatoma xenograft. Our experiments demonstrated specific inhibition of miR-210 expression might be a means to enhance the effectiveness of radiotherapy to human hepatoma.
LinkOut: [PMID: 23618526]
|
Experimental Support 8 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | bone marrow -derived mesenchymal stem cells |
Disease | MIMAT0000267 |
Location of target site | 3'UTR |
Original Description (Extracted from the article) |
...
"Moreover
... - Qiu Y; Chen Y; Zeng T; Guo W; Zhou W; Yang X, 2016, Molecular biology reports. |
Article |
- Qiu Y; Chen Y; Zeng T; Guo W; Zhou W; Yang X - Molecular biology reports, 2016
The healing process of fractured bone is affected by the multiple factors regulating the growth and differentiation of osteoblasts and bone mesenchymal stem cells (MSCs), however, such markers and molecular events need to be orchestrated in details. This study investigated the effect of polyphenol(-)-epigallocatechin-3-gallate (EGCG) on the hypoxia-induced apoptosis and osteogenic differentiation of human bone marrow-derived MSCs, examined the miR-210 induction by EGCG, explored the target inhibition of the expression of receptor tyrosine kinase ligand ephrin-A3 (EFNA3) by miR-210, and then determined the association of the miR-210 promotion with the hypoxia-induced apoptosis and osteogenic differentiation. Results demonstrated that EGCG treatment significantly inhibited the hypoxia-induced apoptosis in MSCs and promoted the level of alkaline phosphatase (ALP), bone morphogenetic protein 2 (BMP-2), propeptide of type I procollagen I (PINP) and runt-related transcription factor 2 (RUNX2) in MSCs under either normoxia or hypoxia. Moreover, the EGCG treatment upregulated the miR-210 expression, in an association with EFNA3 downregulation; and the miR-210 upregulation significantly downregulated the expression of EFNA3 via the specific binding to the 3' UTR of EFNA3. In addition, the manipulated miR-210 upregulation exerted amelioration on the hypoxia-induced apoptosis and on the hypoxia-reduced expression of ALP, BMP-2, PINP and RUNX2 in MSCs. In summary, our study indicated the protective role of EGCG in response to hypoxia and promontory role to osteogenic differentiation in MSCs via upregulating miR-210 and downregulating the expression of miR-210-targeted EFNA3. Our study implies the protective role of EGCG in the hypoxia-induced impairment in MSCs.
LinkOut: [PMID: 26780211]
|
MiRNA-Target Expression Profile | |||||||
---|---|---|---|---|---|---|---|
|
MiRNA-Target Expression Profile (TCGA) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
ID | Target | Description | Validation methods | |||||||||
Strong evidence | Less strong evidence | |||||||||||
MIRT000149 | HOXA9 | homeobox A9 | 4 | 1 | ||||||||
MIRT000150 | TP53I11 | tumor protein p53 inducible protein 11 | 2 | 1 | ||||||||
MIRT000151 | PIM1 | Pim-1 proto-oncogene, serine/threonine kinase | 2 | 1 | ||||||||
MIRT000152 | HOXA1 | homeobox A1 | 2 | 1 | ||||||||
MIRT000153 | FGFRL1 | fibroblast growth factor receptor like 1 | 6 | 3 | ||||||||
MIRT000156 | RAD52 | RAD52 homolog, DNA repair protein | 5 | 3 | ||||||||
MIRT001930 | NPTX1 | neuronal pentraxin 1 | 3 | 2 | ||||||||
MIRT002024 | EFNA3 | ephrin A3 | 8 | 8 | ||||||||
MIRT003153 | BDNF | brain derived neurotrophic factor | 5 | 1 | ||||||||
MIRT003154 | PTPN1 | protein tyrosine phosphatase, non-receptor type 1 | 5 | 1 | ||||||||
MIRT003155 | P4HB | prolyl 4-hydroxylase subunit beta | 6 | 2 | ||||||||
MIRT003156 | UBQLN1 | ubiquilin 1 | 3 | 1 | ||||||||
MIRT003157 | SERTAD2 | SERTA domain containing 2 | 3 | 1 | ||||||||
MIRT003158 | SEH1L | SEH1 like nucleoporin | 3 | 1 | ||||||||
MIRT003159 | NCAM1 | neural cell adhesion molecule 1 | 4 | 1 | ||||||||
MIRT003160 | MID1IP1 | MID1 interacting protein 1 | 3 | 1 | ||||||||
MIRT003161 | MDGA1 | MAM domain containing glycosylphosphatidylinositol anchor 1 | 3 | 1 | ||||||||
MIRT003162 | KIAA1161 | myogenesis regulating glycosidase (putative) | 3 | 1 | ||||||||
MIRT003163 | ISCU | iron-sulfur cluster assembly enzyme | 6 | 7 | ||||||||
MIRT003164 | HOXA3 | homeobox A3 | 3 | 1 | ||||||||
MIRT003165 | GPD1L | glycerol-3-phosphate dehydrogenase 1 like | 7 | 2 | ||||||||
MIRT003166 | DENND6A | DENN domain containing 6A | 3 | 1 | ||||||||
MIRT003167 | CPEB2 | cytoplasmic polyadenylation element binding protein 2 | 5 | 1 | ||||||||
MIRT003168 | CDK10 | cyclin dependent kinase 10 | 3 | 1 | ||||||||
MIRT003169 | ABCB9 | ATP binding cassette subfamily B member 9 | 3 | 1 | ||||||||
MIRT003170 | CBX1 | chromobox 1 | 3 | 1 | ||||||||
MIRT003171 | XIST | X inactive specific transcript (non-protein coding) | 4 | 1 | ||||||||
MIRT003172 | TNPO1 | transportin 1 | 3 | 1 | ||||||||
MIRT003173 | SMCHD1 | structural maintenance of chromosomes flexible hinge domain containing 1 | 3 | 1 | ||||||||
MIRT003174 | PTAR1 | protein prenyltransferase alpha subunit repeat containing 1 | 3 | 1 | ||||||||
MIRT003175 | NIPBL | NIPBL, cohesin loading factor | 3 | 1 | ||||||||
MIRT003176 | MIB1 | mindbomb E3 ubiquitin protein ligase 1 | 3 | 1 | ||||||||
MIRT003177 | HECTD1 | HECT domain E3 ubiquitin protein ligase 1 | 3 | 1 | ||||||||
MIRT003178 | ELK3 | ELK3, ETS transcription factor | 3 | 1 | ||||||||
MIRT003179 | DDAH1 | dimethylarginine dimethylaminohydrolase 1 | 4 | 1 | ||||||||
MIRT003180 | CLASP2 | cytoplasmic linker associated protein 2 | 3 | 1 | ||||||||
MIRT003181 | CHD9 | chromodomain helicase DNA binding protein 9 | 3 | 1 | ||||||||
MIRT003182 | ATP11C | ATPase phospholipid transporting 11C | 3 | 1 | ||||||||
MIRT003183 | APC | APC, WNT signaling pathway regulator | 3 | 1 | ||||||||
MIRT003184 | E2F3 | E2F transcription factor 3 | 7 | 5 | ||||||||
MIRT003185 | ACVR1B | activin A receptor type 1B | 2 | 1 | ||||||||
MIRT003916 | MRE11A | MRE11 homolog, double strand break repair nuclease | 2 | 1 | ||||||||
MIRT003917 | XPA | XPA, DNA damage recognition and repair factor | 2 | 1 | ||||||||
MIRT004672 | MNT | MAX network transcriptional repressor | 4 | 2 | ||||||||
MIRT006326 | AIFM3 | apoptosis inducing factor, mitochondria associated 3 | 3 | 2 | ||||||||
MIRT006519 | CASP8AP2 | caspase 8 associated protein 2 | 4 | 1 | ||||||||
MIRT006663 | VMP1 | vacuole membrane protein 1 | 3 | 2 | ||||||||
MIRT006830 | TFRC | transferrin receptor | 3 | 2 | ||||||||
MIRT047002 | PFDN2 | prefoldin subunit 2 | 1 | 1 | ||||||||
MIRT047003 | U2AF2 | U2 small nuclear RNA auxiliary factor 2 | 1 | 1 | ||||||||
MIRT047004 | UBA1 | ubiquitin like modifier activating enzyme 1 | 1 | 1 | ||||||||
MIRT047005 | ESPL1 | extra spindle pole bodies like 1, separase | 1 | 1 | ||||||||
MIRT047006 | ACTR1A | ARP1 actin related protein 1 homolog A | 1 | 1 | ||||||||
MIRT047007 | SCN1B | sodium voltage-gated channel beta subunit 1 | 1 | 1 | ||||||||
MIRT047008 | RCC2 | regulator of chromosome condensation 2 | 1 | 1 | ||||||||
MIRT053179 | HSD17B1 | hydroxysteroid 17-beta dehydrogenase 1 | 2 | 1 | ||||||||
MIRT054098 | NDUFA4 | NDUFA4, mitochondrial complex associated | 4 | 2 | ||||||||
MIRT054099 | SDHD | succinate dehydrogenase complex subunit D | 6 | 4 | ||||||||
MIRT054141 | STMN1 | stathmin 1 | 3 | 1 | ||||||||
MIRT054142 | DIMT1L | DIM1 dimethyladenosine transferase 1 homolog | 4 | 2 | ||||||||
MIRT054186 | ROD1 | polypyrimidine tract binding protein 3 | 3 | 1 | ||||||||
MIRT054203 | ALDH5A1 | aldehyde dehydrogenase 5 family member A1 | 4 | 1 | ||||||||
MIRT054204 | FOXN3 | forkhead box N3 | 5 | 2 | ||||||||
MIRT054205 | MCM3 | minichromosome maintenance complex component 3 | 4 | 1 | ||||||||
MIRT054206 | IGFBP3 | insulin like growth factor binding protein 3 | 6 | 2 | ||||||||
MIRT054207 | COL4A2 | collagen type IV alpha 2 chain | 6 | 2 | ||||||||
MIRT054208 | INPP5A | inositol polyphosphate-5-phosphatase A | 4 | 1 | ||||||||
MIRT054209 | EHD2 | EH domain containing 2 | 4 | 1 | ||||||||
MIRT054210 | SH3BGRL | SH3 domain binding glutamate rich protein like | 5 | 2 | ||||||||
MIRT054248 | PTPN2 | protein tyrosine phosphatase, non-receptor type 2 | 3 | 1 | ||||||||
MIRT054321 | LDHA | lactate dehydrogenase A | 2 | 1 | ||||||||
MIRT054324 | LDHB | lactate dehydrogenase B | 2 | 1 | ||||||||
MIRT054349 | HIF1A | hypoxia inducible factor 1 alpha subunit | 5 | 2 | ||||||||
MIRT054714 | FOXP3 | forkhead box P3 | 3 | 1 | ||||||||
MIRT054794 | HIF3A | hypoxia inducible factor 3 alpha subunit | 3 | 1 | ||||||||
MIRT115688 | MGRN1 | mahogunin ring finger 1 | 2 | 3 | ||||||||
MIRT170674 | INSIG1 | insulin induced gene 1 | 1 | 1 | ||||||||
MIRT437785 | BNIP3 | BCL2 interacting protein 3 | 5 | 2 | ||||||||
MIRT438739 | KCMF1 | potassium channel modulatory factor 1 | 1 | 1 | ||||||||
MIRT439407 | TNPO3 | transportin 3 | 1 | 1 | ||||||||
MIRT439629 | SIPA1L3 | signal induced proliferation associated 1 like 3 | 1 | 1 | ||||||||
MIRT439632 | SIN3A | SIN3 transcription regulator family member A | 1 | 1 | ||||||||
MIRT439740 | RPL22 | ribosomal protein L22 | 1 | 1 | ||||||||
MIRT439886 | PSAP | prosaposin | 1 | 1 | ||||||||
MIRT439918 | PPP1R2 | protein phosphatase 1 regulatory inhibitor subunit 2 | 1 | 1 | ||||||||
MIRT439928 | POU2AF1 | POU class 2 associating factor 1 | 1 | 1 | ||||||||
MIRT440033 | ICMT | isoprenylcysteine carboxyl methyltransferase | 2 | 3 | ||||||||
MIRT440255 | MEF2D | myocyte enhancer factor 2D | 1 | 1 | ||||||||
MIRT440491 | HMGCS1 | 3-hydroxy-3-methylglutaryl-CoA synthase 1 | 2 | 3 | ||||||||
MIRT440570 | GIT2 | GIT ArfGAP 2 | 1 | 1 | ||||||||
MIRT440647 | FCHSD2 | FCH and double SH3 domains 2 | 1 | 1 | ||||||||
MIRT440830 | DEAF1 | DEAF1, transcription factor | 1 | 1 | ||||||||
MIRT440866 | CSNK1E | casein kinase 1 epsilon | 1 | 1 | ||||||||
MIRT472232 | NFIC | nuclear factor I C | 2 | 2 | ||||||||
MIRT473190 | MITF | melanogenesis associated transcription factor | 2 | 2 | ||||||||
MIRT477856 | DYRK2 | dual specificity tyrosine phosphorylation regulated kinase 2 | 2 | 2 | ||||||||
MIRT497528 | ZNF607 | zinc finger protein 607 | 2 | 2 | ||||||||
MIRT509770 | SERTM1 | serine rich and transmembrane domain containing 1 | 2 | 6 | ||||||||
MIRT524407 | CNTNAP5 | contactin associated protein like 5 | 2 | 4 | ||||||||
MIRT535209 | PKIA | cAMP-dependent protein kinase inhibitor alpha | 2 | 4 | ||||||||
MIRT554511 | RUNX1T1 | RUNX1 translocation partner 1 | 2 | 4 | ||||||||
MIRT558069 | ESCO2 | establishment of sister chromatid cohesion N-acetyltransferase 2 | 2 | 2 | ||||||||
MIRT572273 | KCNJ6 | potassium voltage-gated channel subfamily J member 6 | 2 | 2 | ||||||||
MIRT574255 | DOCK7 | dedicator of cytokinesis 7 | 2 | 4 | ||||||||
MIRT575621 | Foxn3 | forkhead box N3 | 2 | 2 | ||||||||
MIRT575742 | Zfp618 | zinc finger protein 618 | 1 | 1 | ||||||||
MIRT609050 | VAMP4 | vesicle associated membrane protein 4 | 2 | 2 | ||||||||
MIRT611143 | TNRC6B | trinucleotide repeat containing 6B | 2 | 4 | ||||||||
MIRT699226 | SLCO3A1 | solute carrier organic anion transporter family member 3A1 | 2 | 2 | ||||||||
MIRT703060 | GTDC1 | glycosyltransferase like domain containing 1 | 2 | 2 | ||||||||
MIRT716005 | ASB11 | ankyrin repeat and SOCS box containing 11 | 2 | 2 | ||||||||
MIRT731682 | BTK | Bruton tyrosine kinase | 3 | 1 | ||||||||
MIRT733090 | DLEU2L | deleted in lymphocytic leukemia 2-like | 3 | 0 | ||||||||
MIRT733091 | BRCA2 | BRCA2, DNA repair associated | 3 | 0 | ||||||||
MIRT733156 | ITGA5 | integrin subunit alpha 5 | 1 | 0 | ||||||||
MIRT733501 | GATA1 | GATA binding protein 1 | 3 | 0 | ||||||||
MIRT733503 | SMAD2 | SMAD family member 2 | 3 | 0 | ||||||||
MIRT733525 | MIR210HG | MIR210 host gene | 2 | 0 | ||||||||
MIRT733615 | TGFBI | transforming growth factor beta induced | 2 | 0 | ||||||||
MIRT734175 | KRAS | KRAS proto-oncogene, GTPase | 2 | 0 | ||||||||
MIRT734293 | PTEN | phosphatase and tensin homolog | 1 | 0 | ||||||||
MIRT734568 | STAT6 | signal transducer and activator of transcription 6 | 1 | 0 | ||||||||
MIRT734966 | ADAMTS6 | ADAM metallopeptidase with thrombospondin type 1 motif 6 | 1 | 0 | ||||||||
MIRT736294 | ID2 | inhibitor of DNA binding 2, HLH protein | 1 | 0 | ||||||||
MIRT737104 | FABP4 | fatty acid binding protein 4, adipocyte | 3 | 0 | ||||||||
MIRT756028 | NTN4 | netrin 4 | 3 | 1 |
miRNA-Drug Associations | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
miRNA-Drug Resistance Associations | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|