Experimental Support 1 for Functional miRNA-Target Interaction
miRNA:Target
----
Validation Method
Conditions
EC cells
Disease
636931.0;
Original Description (Extracted from the article)
...
"Ectopic let芒鈧鈥7 and miR芒鈧鈥125 decrease mLin41 mRNA in EC cells. mLin41 mRNA was analysed by qRT芒鈧鈥淧CR using 脦虏芒鈧鈥榓ctin as a standard. Expression is plotted relative to a mock transfection set at one. mLin41 mRNA was reduced by about 3芒鈧鈥榝old after transfection with synthetic let芒鈧鈥7a
...
The let-7 miRNA and its target gene Lin-28 interact in a regulatory circuit controlling pluripotency. We investigated an additional let-7 target, mLin41 (mouse homologue of lin-41), as a potential contributor to this circuit. We demonstrate the presence of mLin41 protein in several stem cell niches, including the embryonic ectoderm, epidermis and male germ line. mLin41 colocalized to cytoplasmic foci with P-body markers and the miRNA pathway proteins Ago2, Mov10 and Tnrc6b. In co-precipitation assays, mLin41 interacted with Dicer and the Argonaute proteins Ago1, Ago2 and Ago4. Moreover, we show that mLin41 acts as an E3 ubiquitin ligase in an auto-ubiquitylation assay and that mLin41 mediates ubiquitylation of Ago2 in vitro and in vivo. Overexpression and depletion of mLin41 led to inverse changes in the level of Ago2 protein, implicating mLin41 in the regulation of Ago2 turnover. mLin41 interfered with silencing of target mRNAs for let-7 and miR-124, at least in part by antagonizing Ago2. Furthermore, mLin41 cooperated with the pluripotency factor Lin-28 in suppressing let-7 activity, revealing a dual control mechanism regulating let-7 in stem cells.
- Zhang X; Zuo X; Yang B; Li Z; Xue Y; Zhou et al.
- Cell, 2014
MicroRNAs are well known to mediate translational repression and mRNA degradation in the cytoplasm. Various microRNAs have also been detected in membrane-compartmentalized organelles, but the functional significance has remained elusive. Here, we report that miR-1, a microRNA specifically induced during myogenesis, efficiently enters the mitochondria where it unexpectedly stimulates, rather than represses, the translation of specific mitochondrial genome-encoded transcripts. We show that this positive effect requires specific miR:mRNA base-pairing and Ago2, but not its functional partner GW182, which is excluded from the mitochondria. We provide evidence for the direct action of Ago2 in mitochondrial translation by crosslinking immunoprecipitation coupled with deep sequencing (CLIP-seq), functional rescue with mitochondria-targeted Ago2, and selective inhibition of the microRNA machinery in the cytoplasm. These findings unveil a positive function of microRNA in mitochondrial translation and suggest a highly coordinated myogenic program via miR-1-mediated translational stimulation in the mitochondria and repression in the cytoplasm.