pre-miRNA Information | |
---|---|
pre-miRNA | hsa-mir-133a-1 |
Genomic Coordinates | chr18: 21825698 - 21825785 |
Synonyms | MIRN133A1, MIR133A1 |
Description | Homo sapiens miR-133a-1 stem-loop |
Comment | This miRNA sequence is predicted based on homology to a verified miRNA from mouse . |
RNA Secondary Structure | |
Associated Diseases | |
pre-miRNA | hsa-mir-133a-2 |
Genomic Coordinates | chr20: 62564912 - 62565013 |
Synonyms | MIRN133A2, MIR133A2 |
Description | Homo sapiens miR-133a-2 stem-loop |
Comment | This miRNA sequence is predicted based on homology to a verified miRNA from mouse . |
RNA Secondary Structure | |
Associated Diseases |
Mature miRNA Information | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mature miRNA | hsa-miR-133a-3p | |||||||||||||||||||||||||||
Sequence | 53| UUUGGUCCCCUUCAACCAGCUG |74 | |||||||||||||||||||||||||||
Evidence | Experimental | |||||||||||||||||||||||||||
Experiments | Cloned | DRVs in miRNA |
|
|||||||||||||||||||||||||
SNPs in miRNA |
|
|||||||||||||||||||||||||||
Putative Targets |
miRNA Expression profile | |
---|---|
Human miRNA Tissue Atlas | |
miRNAs in Extracellular Vesicles |
|
Circulating MicroRNA Expression Profiling |
Biomarker Information |
|
---|
Gene Information | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gene Symbol | TAGLN2 | ||||||||||||||||||||
Synonyms | HA1756 | ||||||||||||||||||||
Description | transgelin 2 | ||||||||||||||||||||
Transcript | NM_003564 | ||||||||||||||||||||
Expression | |||||||||||||||||||||
Putative miRNA Targets on TAGLN2 | |||||||||||||||||||||
3'UTR of TAGLN2 (miRNA target sites are highlighted) |
>TAGLN2|NM_003564|3'UTR 1 TCCCACCCCAGGCCTTGCCCCTGCCCTCCCACGAATGGTTAATATATATGTAGATATATATTTTAGCAGTGACATTCCCA 81 GAGAGCCCCAGAGCTCTCAAGCTCCTTTCTGTCAGGGTGGGGGGTTCAGCCTGTCCTGTCACCTCTGAGGTGCCTGCTGG 161 CATCCTCTCCCCCATGCTTACTAATACATTCCCTTCCCCATAGCCATCAAAACTGGACCAACTGGCCTCTTCCTTTCCCC 241 TGGGACCAAAATTTAGGGGCCTCAGTCCCTCACCGCCATGCCCTGGCCTATTCTGTCTCTCCTTCTTCCCCCTGGCCTGT 321 TCTGTCTCTGAGCTCTGTGTCCTCCGTTCATTCCATGGCTGGGAGTCACTGATGCTGCCTCTGCCTTCTGATGCTGGACT 401 GGCCTTGCTTCTACAAGTATGCTTCTCCCACAGCTGTGGCTGCAGGAACTTAATTTATAGGGAGGAGCCTGTGGCAGCTG 481 CTGCCCCAGCCACAGCTGCACTGACTGTGCTCACCACACATCTGGGGCAGCCTTCCCTGGCAGGGGCCCTCGTGGCTTCT 561 CATTTTCCATTCCCTTCACTGTGGCTAAGGGGTGGGGTGAGGGGATGGAGAGGGAGGGCTGCCTACCATGGTCTGGGGCT 641 TGAGGAAGATGAGTTTGTTGATTTAAATAAAGAATTTGTCATTTTTGAATGGAAAAAA Target sites
Provided by authors
Predicted by miRanda
DRVs
SNPs
DRVs & SNPs
|
||||||||||||||||||||
miRNA-target interactions (Predicted by miRanda) |
|
||||||||||||||||||||
DRVs in gene 3'UTRs | |||||||||||||||||||||
SNPs in gene 3'UTRs |
Experimental Support 1 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | T24/83 , BOY |
Disease | bladder cancer; |
Location of target site | 3'UTR |
Tools used in this research | miRBase Target Database |
Original Description (Extracted from the article) |
...
miR-1/miR-133a clusters may function as tumour suppressors through repression of oncogenic TAGLN2 in BC. MiR-1/miR-133a transfection and TAGLN2 knockdown resulted in decreased BC cell viability and induction of apoptosis. Novel molecular networks provided by miRNAs may provide new insights into the underlying molecular mechanisms of BC.
... - Yoshino H; Chiyomaru T; Enokida H; Kawakami et al., 2011, British journal of cancer. |
Article |
- Yoshino H; Chiyomaru T; Enokida H; Kawakami et al. - British journal of cancer, 2011
BACKGROUND: On the base of the microRNA (miRNA) expression signature of bladder cancer (BC), we found that miR-1 and miR-133a were significantly downregulated in BC. In this study, we focussed on the functional significance of miR-1 and miR-133a in BC cell lines and identified a molecular network of these miRNAs. METHODS AND RESULTS: We investigated the miRNA expression signature of BC clinical specimens and identified several downregulated miRNAs (miR-133a, miR-204, miR-1, miR-139-5p, and miR-370). MiR-1 and miR-133a showed potential role of tumour suppressors by functional analyses of BC cells such as cell proliferation, apoptosis, migration, and invasion assays. Molecular target searches of these miRNAs showed that transgelin 2 (TAGLN2) was directly regulated by both miR-1 and miR-133a. Silencing of TAGLN2 study demonstrated significant inhibitions of cell proliferation and increase of apoptosis in BC cell lines. The immunohistochemistry showed a positive correlation between TAGLN2 expression and tumour grade in clinical BC specimens. CONCLUSIONS: The downregulation of miR-1 and miR-133a was a frequent event in BC, and these miRNAs were recognised as tumour suppressive. TAGLN2 may be a target of both miRNAs and had a potential oncogenic function. Therefore, novel molecular networks provided by miRNAs may provide new insights into the underlying molecular mechanisms of BC.
LinkOut: [PMID: 21304530]
|
Experimental Support 2 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Article |
- Uchida Y; Chiyomaru T; Enokida H; Kawakami et al. - Urologic oncology, 2013
OBJECTIVE: We previously demonstrated that miR-133a is a tumor-suppressive microRNA (miRNA) and is commonly down-regulated in human bladder cancer (BC). The aim of this study is to determine a novel oncogenic gene targeted by miR-133a in BC. METHODS: To identify genes targeted by miR-133a, an oligo-microarray analysis was performed using the miR-133a-transfected BC cell lines. For gain/loss-of-function studies, miR-133a/si-glutathione S-transferase pi1 (GSTP1)-transfectants were subjected to XTT assay and flow cytometry to evaluate their cell viability and apoptosis status. The luciferase reporter assay was used to confirm the actual binding sites between miR-133a and GSTP1 mRNA. The mRNA and protein expression of GSTP1 in BC cell lines and clinical samples were evaluated by real-time RT-PCR and Western blot, respectively. RESULTS: MiR-133a transfection induced cell viability inhibition and apoptosis in BC cell lines. We focused on the GSTP1 gene that was the top 7 down-regulated one in the gene profile from the miR-133a-transfectants. MiR-133a transfection repressed expression levels of mRNA and protein levels of GSTP1. A luciferase reporter assay suggested that the actual binding may occur between miR-133a and GSTP1 mRNA. Cell viability inhibition and apoptosis were induced in the si-GSTP1 transfectants compared with the controls (P < 0.005). GSTP1 mRNA expression levels in 43 clinical BCs were significantly higher than those in eight normal bladder epitheliums (P = 0.0277). CONCLUSION: Our data suggest that tumor suppressive miR-133a directly regulated oncogenic GSTP1 gene in BC, and that an anti-apoptotic effect mediated by GSTP1 is maintained by miR-133a down-regulation in human BC.
LinkOut: [PMID: 21396852]
|
Experimental Support 3 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Article |
- Nohata N; Hanazawa T; Kikkawa N; Sakurai D; et al. - International journal of oncology, 2011
Based on our microRNA (miRNA) expression signature analysis of maxillary sinus squamous cell carcinoma (MSSCC), we found that miR-1 and miR-133a were significantly reduced in tumor tissues. Quantitative real-time RT-PCR revealed that the expression levels of miR-1 and miR-133a were significantly downregulated in clinical MSSCC tumor tissues compared with normal tissues. We focused on the functional significance of miR-1 and miR-133a in cancer cells and identification of the novel cancer networks regulated by these miRNAs in MSSCC. Restoration of downregulated miRNAs (miR-1 or miR-133a) in cancer cells revealed that both miRNAs significantly inhibited cancer cell proliferation and induced cell apoptosis. Molecular target identification of these miRNAs showed that transgelin 2 (TAGLN2) and purine nucleoside phosphorylase (PNP) were regulated by miR-1 and miR-133a. Both TAGLN2 and PNP mRNA expression levels were significantly upregulated in clinical MSSCC tumor tissues. Silencing studies of target genes demonstrated that both genes inhibited cancer cell proliferation. The identification of novel miR-1/miR-133a-regulated cancer pathways could provide new insights into potential molecular mechanisms of MSSCC oncogenesis.
LinkOut: [PMID: 21701775]
|
Experimental Support 4 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | 786-O , A498 |
Location of target site | 3'UTR |
Original Description (Extracted from the article) |
...
TAGLN2 as a direct target for both miR-1 and miR- 133a in RCC
... - Kawakami K; Enokida H; Chiyomaru T; et al., 2012, European journal of cancer (Oxford, England : 1990). |
Article |
- Kawakami K; Enokida H; Chiyomaru T; et al. - European journal of cancer (Oxford, England : 1990), 2012
PURPOSE: The aim of this study was to find a novel molecular network involved in renal cell carcinoma (RCC) development through investigating the functions of miR-1 and miR-133a and their target genes. METHODS: We checked the expression levels of miR-1 and miR-133a in RCC cell lines and specimens (N=40) using real time RT-PCR. MiR-1 and miR-133a transfectants were subjected to a gain-of-function study to identify the functions of the miRNAs. To find the target genes of the miRNAs, we analysed the gene expression profile of their transfectants and performed a luciferase reporter assay. mRNA expression levels of the candidate target gene in the clinical specimens were examined, and loss-of-function studies were performed. RESULTS: The expression levels of miR-1 and miR-133a were significantly suppressed in RCC cell lines and specimens. Ectopic restoration of miR-1 and miR-133a showed significant inhibition of cell proliferation and invasion, and moreover, revealed induction of apoptosis and cell cycle arrest. The luciferase assay revealed transgelin-2 (TAGLN2), selected as a target gene for miR-1 and miR-133a on the basis of the gene expression profile, to be directly regulated by both miR-1 and miR-133a. The loss-of-function studies showed significant inhibitions of cell proliferation and invasion in the si-TAGLN2 transfectant. The expression level of TAGLN2 mRNA was significantly up-regulated in the RCC specimens; in addition, there was a statistically significant inverse correlation between TAGLN2 and miR-1 and miR-133a expression. CONCLUSIONS: Our data indicate that up-regulation of the oncogenic TAGLN2 was due to down-regulation of tumour-suppressive miR-1 and miR-133a in human RCC.
LinkOut: [PMID: 21745735]
|
MiRNA-Target Expression Profile | |||||||
---|---|---|---|---|---|---|---|
|
MiRNA-Target Expression Profile (TCGA) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
122 hsa-miR-133a-3p Target Genes:
Functional analysis:
ID | Target | Description | Validation methods | |||||||||
Strong evidence | Less strong evidence | |||||||||||
MIRT000325 | RHOA | ras homolog family member A | 1 | 2 | ||||||||
MIRT000327 | CDC42 | cell division cycle 42 | 4 | 2 | ||||||||
MIRT000328 | ERG | ERG, ETS transcription factor | 1 | 1 | ||||||||
MIRT000329 | HCN4 | hyperpolarization activated cyclic nucleotide gated potassium channel 4 | 2 | 1 | ||||||||
MIRT000330 | UCP2 | uncoupling protein 2 | 2 | 2 | ||||||||
MIRT000331 | KRT7 | keratin 7 | 2 | 2 | ||||||||
MIRT001203 | CACNA1C | calcium voltage-gated channel subunit alpha1 C | 3 | 1 | ||||||||
MIRT001204 | HCN2 | hyperpolarization activated cyclic nucleotide gated potassium and sodium channel 2 | 4 | 2 | ||||||||
MIRT001816 | PKM | pyruvate kinase, muscle | 1 | 1 | ||||||||
MIRT001986 | CASP9 | caspase 9 | 3 | 3 | ||||||||
MIRT002925 | KCNQ1 | potassium voltage-gated channel subfamily Q member 1 | 4 | 1 | ||||||||
MIRT003542 | FSCN1 | fascin actin-bundling protein 1 | 5 | 4 | ||||||||
MIRT004831 | KCNH2 | potassium voltage-gated channel subfamily H member 2 | 4 | 1 | ||||||||
MIRT005604 | TAGLN2 | transgelin 2 | 5 | 4 | ||||||||
MIRT005813 | LASP1 | LIM and SH3 protein 1 | 3 | 2 | ||||||||
MIRT006571 | PNP | purine nucleoside phosphorylase | 4 | 2 | ||||||||
MIRT006680 | MSN | moesin | 2 | 1 | ||||||||
MIRT007032 | EGFR | epidermal growth factor receptor | 3 | 5 | ||||||||
MIRT007088 | VKORC1 | vitamin K epoxide reductase complex subunit 1 | 1 | 1 | ||||||||
MIRT007383 | PRDM16 | PR/SET domain 16 | 1 | 2 | ||||||||
MIRT021693 | TPM1 | tropomyosin 1 | 1 | 1 | ||||||||
MIRT021695 | FBN1 | fibrillin 1 | 1 | 1 | ||||||||
MIRT021696 | FAM120C | family with sequence similarity 120C | 1 | 1 | ||||||||
MIRT021697 | BCAN | brevican | 1 | 1 | ||||||||
MIRT021698 | TCTEX1D2 | Tctex1 domain containing 2 | 1 | 1 | ||||||||
MIRT021699 | ARL6IP1 | ADP ribosylation factor like GTPase 6 interacting protein 1 | 1 | 1 | ||||||||
MIRT021700 | RFT1 | RFT1 homolog | 1 | 1 | ||||||||
MIRT021701 | SENP1 | SUMO1/sentrin specific peptidase 1 | 1 | 1 | ||||||||
MIRT021702 | SMIM14 | small integral membrane protein 14 | 1 | 1 | ||||||||
MIRT021703 | PRELID1 | PRELI domain containing 1 | 1 | 1 | ||||||||
MIRT021704 | CNN2 | calponin 2 | 3 | 3 | ||||||||
MIRT021705 | ARPC5 | actin related protein 2/3 complex subunit 5 | 4 | 2 | ||||||||
MIRT021706 | FTL | ferritin light chain | 2 | 2 | ||||||||
MIRT021707 | CERS2 | ceramide synthase 2 | 1 | 1 | ||||||||
MIRT021708 | SEC61B | Sec61 translocon beta subunit | 1 | 1 | ||||||||
MIRT021709 | PLEKHA3 | pleckstrin homology domain containing A3 | 1 | 1 | ||||||||
MIRT021710 | EGFL7 | EGF like domain multiple 7 | 1 | 1 | ||||||||
MIRT021711 | VEGFA | vascular endothelial growth factor A | 1 | 1 | ||||||||
MIRT021712 | PIK3R2 | phosphoinositide-3-kinase regulatory subunit 2 | 1 | 1 | ||||||||
MIRT021713 | RGS3 | regulator of G protein signaling 3 | 1 | 1 | ||||||||
MIRT021714 | COL1A1 | collagen type I alpha 1 chain | 4 | 1 | ||||||||
MIRT021715 | GSTP1 | glutathione S-transferase pi 1 | 2 | 1 | ||||||||
MIRT035537 | SP1 | Sp1 transcription factor | 2 | 2 | ||||||||
MIRT035579 | KLF15 | Kruppel like factor 15 | 1 | 1 | ||||||||
MIRT045837 | NR4A2 | nuclear receptor subfamily 4 group A member 2 | 1 | 1 | ||||||||
MIRT052647 | BCL2L1 | BCL2 like 1 | 4 | 2 | ||||||||
MIRT052648 | MCL1 | MCL1, BCL2 family apoptosis regulator | 4 | 2 | ||||||||
MIRT053333 | RFFL | ring finger and FYVE like domain containing E3 ubiquitin protein ligase | 4 | 1 | ||||||||
MIRT054310 | IGF1R | insulin like growth factor 1 receptor | 3 | 2 | ||||||||
MIRT055599 | FAM160B1 | family with sequence similarity 160 member B1 | 2 | 2 | ||||||||
MIRT081957 | UBA2 | ubiquitin like modifier activating enzyme 2 | 4 | 1 | ||||||||
MIRT437400 | MMP14 | matrix metallopeptidase 14 | 3 | 1 | ||||||||
MIRT437953 | ANXA2 | annexin A2 | 4 | 1 | ||||||||
MIRT437954 | SNX30 | sorting nexin family member 30 | 4 | 1 | ||||||||
MIRT437955 | SGMS2 | sphingomyelin synthase 2 | 4 | 1 | ||||||||
MIRT438719 | PDLIM5 | PDZ and LIM domain 5 | 3 | 1 | ||||||||
MIRT452802 | PACS2 | phosphofurin acidic cluster sorting protein 2 | 2 | 2 | ||||||||
MIRT462823 | BCL3 | B-cell CLL/lymphoma 3 | 2 | 2 | ||||||||
MIRT468494 | SESN2 | sestrin 2 | 2 | 2 | ||||||||
MIRT477714 | EFHD2 | EF-hand domain family member D2 | 2 | 2 | ||||||||
MIRT483852 | EMID1 | EMI domain containing 1 | 2 | 2 | ||||||||
MIRT490039 | PRRT2 | proline rich transmembrane protein 2 | 2 | 2 | ||||||||
MIRT491349 | CDKN1A | cyclin dependent kinase inhibitor 1A | 2 | 4 | ||||||||
MIRT504443 | MC2R | melanocortin 2 receptor | 2 | 2 | ||||||||
MIRT505701 | SESN3 | sestrin 3 | 2 | 2 | ||||||||
MIRT513521 | RHOQ | ras homolog family member Q | 2 | 4 | ||||||||
MIRT517423 | HIST2H2AC | histone cluster 2 H2A family member c | 2 | 2 | ||||||||
MIRT526599 | DCAKD | dephospho-CoA kinase domain containing | 2 | 2 | ||||||||
MIRT528904 | THBS2 | thrombospondin 2 | 2 | 2 | ||||||||
MIRT533060 | ZBTB37 | zinc finger and BTB domain containing 37 | 2 | 2 | ||||||||
MIRT534126 | SNX33 | sorting nexin 33 | 2 | 2 | ||||||||
MIRT534700 | RNF103-CHMP3 | RNF103-CHMP3 readthrough | 2 | 4 | ||||||||
MIRT535732 | MYPN | myopalladin | 2 | 2 | ||||||||
MIRT538529 | CHMP3 | charged multivesicular body protein 3 | 2 | 4 | ||||||||
MIRT550878 | IBA57 | IBA57 homolog, iron-sulfur cluster assembly | 2 | 2 | ||||||||
MIRT551260 | PSMG1 | proteasome assembly chaperone 1 | 2 | 2 | ||||||||
MIRT551981 | UGT2B10 | UDP glucuronosyltransferase family 2 member B10 | 2 | 2 | ||||||||
MIRT553866 | SYAP1 | synapse associated protein 1 | 2 | 2 | ||||||||
MIRT558810 | CDK5R1 | cyclin dependent kinase 5 regulatory subunit 1 | 2 | 2 | ||||||||
MIRT559367 | ATP13A3 | ATPase 13A3 | 2 | 2 | ||||||||
MIRT560941 | ZFP28 | ZFP28 zinc finger protein | 2 | 2 | ||||||||
MIRT565461 | SUPT16H | SPT16 homolog, facilitates chromatin remodeling subunit | 2 | 2 | ||||||||
MIRT566234 | PTMA | prothymosin, alpha | 2 | 2 | ||||||||
MIRT568217 | C11orf24 | chromosome 11 open reading frame 24 | 2 | 2 | ||||||||
MIRT608912 | NCDN | neurochondrin | 2 | 6 | ||||||||
MIRT613229 | CCDC39 | coiled-coil domain containing 39 | 2 | 2 | ||||||||
MIRT623563 | ITPKB | inositol-trisphosphate 3-kinase B | 2 | 2 | ||||||||
MIRT637224 | TMEM59 | transmembrane protein 59 | 2 | 2 | ||||||||
MIRT641669 | CCNI | cyclin I | 2 | 2 | ||||||||
MIRT644440 | ALDOC | aldolase, fructose-bisphosphate C | 2 | 2 | ||||||||
MIRT644755 | TXNRD3NB | thioredoxin reductase 3 neighbor | 2 | 2 | ||||||||
MIRT646711 | PDE1A | phosphodiesterase 1A | 2 | 2 | ||||||||
MIRT647577 | RBMXL1 | RNA binding motif protein, X-linked like 1 | 2 | 2 | ||||||||
MIRT647760 | RNF168 | ring finger protein 168 | 2 | 2 | ||||||||
MIRT649267 | C17orf64 | chromosome 17 open reading frame 64 | 2 | 2 | ||||||||
MIRT651238 | ZMAT4 | zinc finger matrin-type 4 | 2 | 2 | ||||||||
MIRT652146 | TRIM71 | tripartite motif containing 71 | 2 | 2 | ||||||||
MIRT657168 | IP6K1 | inositol hexakisphosphate kinase 1 | 2 | 2 | ||||||||
MIRT668302 | FOSL2 | FOS like 2, AP-1 transcription factor subunit | 2 | 2 | ||||||||
MIRT687546 | MLEC | malectin | 2 | 2 | ||||||||
MIRT690857 | PLEKHG2 | pleckstrin homology and RhoGEF domain containing G2 | 2 | 2 | ||||||||
MIRT697060 | PSMC4 | proteasome 26S subunit, ATPase 4 | 2 | 2 | ||||||||
MIRT699725 | SERPINH1 | serpin family H member 1 | 2 | 2 | ||||||||
MIRT700858 | PER2 | period circadian clock 2 | 2 | 2 | ||||||||
MIRT705068 | C4orf29 | abhydrolase domain containing 18 | 2 | 2 | ||||||||
MIRT709496 | ANGPT4 | angiopoietin 4 | 2 | 2 | ||||||||
MIRT713925 | PIGR | polymeric immunoglobulin receptor | 2 | 2 | ||||||||
MIRT716058 | SFTPB | surfactant protein B | 2 | 2 | ||||||||
MIRT716724 | APOL6 | apolipoprotein L6 | 2 | 2 | ||||||||
MIRT721677 | CMTM4 | CKLF like MARVEL transmembrane domain containing 4 | 2 | 2 | ||||||||
MIRT723379 | NFAM1 | NFAT activating protein with ITAM motif 1 | 2 | 2 | ||||||||
MIRT731340 | IGF1 | insulin like growth factor 1 | 1 | 1 | ||||||||
MIRT731591 | ZEB1 | zinc finger E-box binding homeobox 1 | 1 | 1 | ||||||||
MIRT732526 | PTBP1 | polypyrimidine tract binding protein 1 | 2 | 0 | ||||||||
MIRT732527 | KDM5C | lysine demethylase 5C | 2 | 0 | ||||||||
MIRT732589 | BCL2 | BCL2, apoptosis regulator | 2 | 0 | ||||||||
MIRT732590 | CASP3 | caspase 3 | 2 | 0 | ||||||||
MIRT733594 | PPP2CA | protein phosphatase 2 catalytic subunit alpha | 3 | 0 | ||||||||
MIRT735355 | MB | myoglobin | 1 | 0 | ||||||||
MIRT735744 | CDCA8 | cell division cycle associated 8 | 3 | 0 | ||||||||
MIRT736984 | SET | SET nuclear proto-oncogene | 1 | 0 | ||||||||
MIRT737550 | TGFB1 | transforming growth factor beta 1 | 4 | 0 |
miRNA-Drug Associations | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
miRNA-Drug Resistance Associations | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|