pre-miRNA Information | |
---|---|
pre-miRNA | hsa-mir-6871 |
Genomic Coordinates | chr20: 41169023 - 41169078 |
Description | Homo sapiens miR-6871 stem-loop |
Comment | None |
RNA Secondary Structure |
Mature miRNA Information | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mature miRNA | hsa-miR-6871-3p | |||||||||||||||||||||||||||
Sequence | 35| CAGCACCCUGUGGCUCCCACAG |56 | |||||||||||||||||||||||||||
Evidence | Experimental | |||||||||||||||||||||||||||
Experiments | Meta-analysis | DRVs in miRNA |
|
|||||||||||||||||||||||||
SNPs in miRNA |
|
|||||||||||||||||||||||||||
Putative Targets |
Gene Information | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gene Symbol | BTG2 | ||||||||||||||||||||
Synonyms | APRO1, PC3, TIS21 | ||||||||||||||||||||
Description | BTG anti-proliferation factor 2 | ||||||||||||||||||||
Transcript | NM_006763 | ||||||||||||||||||||
Expression | |||||||||||||||||||||
Putative miRNA Targets on BTG2 | |||||||||||||||||||||
3'UTR of BTG2 (miRNA target sites are highlighted) |
>BTG2|NM_006763|3'UTR 1 GCCCTTCCGCCCCCGCCCTGGGCGCCGCCGTGCTCATGCTGCCGTGACAACAGGCCACCACATACCTCAACCTGGGGAAC 81 TGTATTTTTAAATGAAGAGCTATTTATATATATTATTTTTTTTTAAGAAAGGAGGAAAAGAAACCAAAAGTTTTTTTTAA 161 GAAAAAAAATCCTTCAAGGGAGCTGCTTGGAAGTGGCCTCCCCAGGTGCCTTTGGAGAGAACTGTTGCGTGCTTGAGTCT 241 GTGAGCCAGTGTCTGCCTATAGGAGGGGGAGCTGTTAGGGGGTAGACCTAGCCAAGGAGAAGTGGGAGACGTTTGGCTAG 321 CACCCCAGGAAGATGTGAGAGGGAGCAAGCAAGGTTAGCAACTGTGAACAGAGAGGTCGGGATTTGCCCTGGGGGAGGAA 401 GAGAGGCCAAGTTCAGAGCTCTCTGTCTCCCCCAGCCAGACACCTGCATCCCTGGCTCCTCTATTACTCAGGGGCATTCA 481 TGCCTGGACTTAAACAATACTATGTTATCTTTTCTTTTATTTTTCTAATGAGGTCCTGGGCAGAGAGTGAAAAGGCCTCT 561 CCTGATTCCTACTGTCCTAAGCTGCTTTTCTTGAAATCATGACTTGTTTCTAATTCTACCCTCAGGGGCCTGTAGATGTT 641 GCTTTCCAGCCAGGAATCTAAAGCTTTGGGTTTTCTGAGGGGGGGGAGGAGGGAACTGGAGGTTATTGGGGTTAGGATGG 721 AAGGGAACTCTGCACAAAACCTTTGCTTTGCTAGTGCTGCTTTGTGTGTATGTGTGGCAAATAATTTGGGGGTGATTTGC 801 AATGAAATTTTGGGACCCAAAGAGTATCCACTGGGGATGTTTTTTGGCCAAAACTCTTCCTTTTGGAACCACATGAAAGT 881 CTTGATGCTGCTGCCATGATCCCTTTGAGAGGTGGCTCAAAAGCTACAGGGAACTCCAGGTCCTTTATTACTGCCTTCTT 961 TTCAAAAGCACAACTCTCCTCTAACCCTCCCCTCCCCCTTCCCTTCTGGTCGGGTCATAGAGCTACCGTATTTTCTAGGA 1041 CAAGAGTTCTCAGTCACTGTGCAATATGCCCCCTGGGTCCCAGGAGGGTCTGGAGGAAAACTGGCTATCAGAACCTCCTG 1121 ATGCCCTGGTGGGCTTAGGGAACCATCTCTCCTGCTCTCCTTGGGATGATGGCTGGCTAGTCAGCCTTGCATGTATTCCT 1201 TGGCTGAATGGGAGAGTGCCCCATGTTCTGCAAGACTACTTGGTATTCTTGTAGGGCCGACACTAAATAAAAGCCAAACC 1281 TTGGGCACTGTTTTTTCTCCCTGGTGCTCAGAGCACCTGTGGGAAAGGTTGCTGTCTGTCTCAGTACAATCCAAATTTGT 1361 CGTAGACTTGTGCAATATATACTGTTGTGGGTTGGAGAAAAGTGGAAAGCTACACTGGGAAGAAACTCCCTTCCTTCAAT 1441 TTCTCAGTGACATTGATGAGGGGTCCTCAAAAGACCTCGAGTTTCCCAAACCGAATCACCTTAAGAAGGACAGGGCTAGG 1521 GCATTTGGCCAGGATGGCCACCCTCCTGCTGTTGCCCCTTAGTGAGGAATCTTCACCCCACTTCCTCTACCCCCAGGTTC 1601 TCCTCCCCACAGCCAGTCCCCTTTCCTGGATTTCTAAACTGCTCAATTTTGACTCAAAGGTGCTATTTACCAAACACTCT 1681 CCCTACCCATTCCTGCCAGCTCTGCCTCCTTTTCAACTCTCCACATTTTGTATTGCCTTCCCAGACCTGCTTCCAGTCTT 1761 TATTGCTTTAAAGTTCACTTTGGGCCCACAGACCCAAGAGCTAATTTTCTGGTTTGTGGGTTGAAACAAAGCTGTGAATC 1841 ACTGCAGGCTGTGTTCTTGCATCTTGTCTGCAAACAGGTCCCTGCCTTTTTAGAAGCAGCCTCATGGTCTCATGCTTAAT 1921 CTTGTCTCTCTTCTCTTCTTTATGATGTTCACTTTAAAAACAACAAAACCCCTGAGCTGGACTGTTGAGCAGGCCTGTCT 2001 CTCCTATTAAGTAAAAATAAATAGTAGTAGTATGTTTGTAAGCTATTCTGACAGAAAAGACAAAGGTTACTAATTGTATG 2081 ATAGTGTTTTTATATGGAAGAATGTACAGCTTATGGACAAATGTACACCTTTTTGTTACTTTAATAAAAATGTAGTAGGA 2161 TAAAAAAAAA Target sites
Provided by authors
Predicted by miRanda
DRVs
SNPs
DRVs & SNPs
|
||||||||||||||||||||
miRNA-target interactions (Predicted by miRanda) |
|
||||||||||||||||||||
DRVs in gene 3'UTRs | |||||||||||||||||||||
SNPs in gene 3'UTRs |
Experimental Support 1 for Functional miRNA-Target Interaction | |||||||
---|---|---|---|---|---|---|---|
miRNA:Target | ---- | ||||||
Validation Method |
|
||||||
Conditions | C8166 | ||||||
Location of target site | 3'UTR | ||||||
Tools used in this research | TargetScan , miRTarCLIP , Piranha | ||||||
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in GSM1462572. RNA binding protein: AGO2. Condition:C8166 NL4-3
... - Whisnant AW; Bogerd HP; Flores O; Ho P; et al., 2013, mBio. |
||||||
miRNA-target interactions (Provided by authors) |
|
||||||
Article |
- Whisnant AW; Bogerd HP; Flores O; Ho P; et al. - mBio, 2013
UNLABELLED: The question of how HIV-1 interfaces with cellular microRNA (miRNA) biogenesis and effector mechanisms has been highly controversial. Here, we first used deep sequencing of small RNAs present in two different infected cell lines (TZM-bl and C8166) and two types of primary human cells (CD4(+) peripheral blood mononuclear cells [PBMCs] and macrophages) to unequivocally demonstrate that HIV-1 does not encode any viral miRNAs. Perhaps surprisingly, we also observed that infection of T cells by HIV-1 has only a modest effect on the expression of cellular miRNAs at early times after infection. Comprehensive analysis of miRNA binding to the HIV-1 genome using the photoactivatable ribonucleoside-induced cross-linking and immunoprecipitation (PAR-CLIP) technique revealed several binding sites for cellular miRNAs, a subset of which were shown to be capable of mediating miRNA-mediated repression of gene expression. However, the main finding from this analysis is that HIV-1 transcripts are largely refractory to miRNA binding, most probably due to extensive viral RNA secondary structure. Together, these data demonstrate that HIV-1 neither encodes viral miRNAs nor strongly influences cellular miRNA expression, at least early after infection, and imply that HIV-1 transcripts have evolved to avoid inhibition by preexisting cellular miRNAs by adopting extensive RNA secondary structures that occlude most potential miRNA binding sites. IMPORTANCE: MicroRNAs (miRNAs) are a ubiquitous class of small regulatory RNAs that serve as posttranscriptional regulators of gene expression. Previous work has suggested that HIV-1 might subvert the function of the cellular miRNA machinery by expressing viral miRNAs or by dramatically altering the level of cellular miRNA expression. Using very sensitive approaches, we now demonstrate that neither of these ideas is in fact correct. Moreover, HIV-1 transcripts appear to largely avoid regulation by cellular miRNAs by adopting an extensive RNA secondary structure that occludes the ability of cellular miRNAs to interact with viral mRNAs. Together, these data suggest that HIV-1, rather than seeking to control miRNA function in infected cells, has instead evolved a mechanism to become largely invisible to cellular miRNA effector mechanisms.
LinkOut: [PMID: 23592263]
|
Experimental Support 2 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | MCF7 |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in SRR1045082. RNA binding protein: AGO2. Condition:Untreated
... - Farazi TA; Ten Hoeve JJ; Brown M; et al., 2014, Genome biology. |
Article |
- Farazi TA; Ten Hoeve JJ; Brown M; et al. - Genome biology, 2014
BACKGROUND: Various microRNAs (miRNAs) are up- or downregulated in tumors. However, the repression of cognate miRNA targets responsible for the phenotypic effects of this dysregulation in patients remains largely unexplored. To define miRNA targets and associated pathways, together with their relationship to outcome in breast cancer, we integrated patient-paired miRNA-mRNA expression data with a set of validated miRNA targets and pathway inference. RESULTS: To generate a biochemically-validated set of miRNA-binding sites, we performed argonaute-2 photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (AGO2-PAR-CLIP) in MCF7 cells. We then defined putative miRNA-target interactions using a computational model, which ranked and selected additional TargetScan-predicted interactions based on features of our AGO2-PAR-CLIP binding-site data. We subselected modeled interactions according to the abundance of their constituent miRNA and mRNA transcripts in tumors, and we took advantage of the variability of miRNA expression within molecular subtypes to detect miRNA repression. Interestingly, our data suggest that miRNA families control subtype-specific pathways; for example, miR-17, miR-19a, miR-25, and miR-200b show high miRNA regulatory activity in the triple-negative, basal-like subtype, whereas miR-22 and miR-24 do so in the HER2 subtype. An independent dataset validated our findings for miR-17 and miR-25, and showed a correlation between the expression levels of miR-182 targets and overall patient survival. Pathway analysis associated miR-17, miR-19a, and miR-200b with leukocyte transendothelial migration. CONCLUSIONS: We combined PAR-CLIP data with patient expression data to predict regulatory miRNAs, revealing potential therapeutic targets and prognostic markers in breast cancer.
LinkOut: [PMID: 24398324]
|
Experimental Support 3 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | HCT116 |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in ERX177612. RNA binding protein: AGO2. Condition:p53_V_AGO_CLIP_3_2
PAR-CLIP data was present in ERX177624. RNA binding protein: AGO2. Condition:p53_V_AGO_CLIP_4_2
PAR-CLIP data was present in ERX177616. RNA binding protein: AGO2. Condition:p53_V_AGO_CLIP_3_6
... - Krell J; Stebbing J; Carissimi C; Dabrowska et al., 2016, Genome research. |
Article |
- Krell J; Stebbing J; Carissimi C; Dabrowska et al. - Genome research, 2016
DNA damage activates TP53-regulated surveillance mechanisms that are crucial in suppressing tumorigenesis. TP53 orchestrates these responses directly by transcriptionally modulating genes, including microRNAs (miRNAs), and by regulating miRNA biogenesis through interacting with the DROSHA complex. However, whether the association between miRNAs and AGO2 is regulated following DNA damage is not yet known. Here, we show that, following DNA damage, TP53 interacts with AGO2 to induce or reduce AGO2's association of a subset of miRNAs, including multiple let-7 family members. Furthermore, we show that specific mutations in TP53 decrease rather than increase the association of let-7 family miRNAs, reducing their activity without preventing TP53 from interacting with AGO2. This is consistent with the oncogenic properties of these mutants. Using AGO2 RIP-seq and PAR-CLIP-seq, we show that the DNA damage-induced increase in binding of let-7 family members to the RISC complex is functional. We unambiguously determine the global miRNA-mRNA interaction networks involved in the DNA damage response, validating them through the identification of miRNA-target chimeras formed by endogenous ligation reactions. We find that the target complementary region of the let-7 seed tends to have highly fixed positions and more variable ones. Additionally, we observe that miRNAs, whose cellular abundance or differential association with AGO2 is regulated by TP53, are involved in an intricate network of regulatory feedback and feedforward circuits. TP53-mediated regulation of AGO2-miRNA interaction represents a new mechanism of miRNA regulation in carcinogenesis.
LinkOut: [PMID: 26701625]
|
Experimental Support 4 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | Prostate Tissue |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in SRX1760597. RNA binding protein: AGO2. Condition:AGO-CLIP-LNCaP_C
... - Hamilton MP; Rajapakshe KI; Bader DA; Cerne et al., 2016, Neoplasia (New York, N.Y.). |
Article |
- Hamilton MP; Rajapakshe KI; Bader DA; Cerne et al. - Neoplasia (New York, N.Y.), 2016
MicroRNA (miRNA) deregulation in prostate cancer (PCa) contributes to PCa initiation and metastatic progression. To comprehensively define the cancer-associated changes in miRNA targeting and function in commonly studied models of PCa, we performed photoactivatable ribonucleoside-enhanced cross-linking immunoprecipitation of the Argonaute protein in a panel of PCa cell lines modeling different stages of PCa progression. Using this comprehensive catalogue of miRNA targets, we analyzed miRNA targeting on known drivers of PCa and examined tissue-specific and stage-specific pathway targeting by miRNAs. We found that androgen receptor is the most frequently targeted PCa oncogene and that miR-148a targets the largest number of known PCa drivers. Globally, tissue-specific and stage-specific changes in miRNA targeting are driven by homeostatic response to active oncogenic pathways. Our findings indicate that, even in advanced PCa, the miRNA pool adapts to regulate continuing alterations in the cancer genome to balance oncogenic molecular changes. These findings are important because they are the first to globally characterize miRNA changes in PCa and demonstrate how the miRNA target spectrum responds to staged tumorigenesis.
LinkOut: [PMID: 27292025]
|
CLIP-seq Support 1 for dataset SRR1045082 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | MCF7 / Untreated |
Location of target site | ENST00000290551.4 | 3UTR | CUAUUUACCAAACACUCUCCCUACCCAUUCCU |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 24398324 / SRX388831 |
CLIP-seq Viewer | Link |
CLIP-seq Support 2 for dataset GSM1462572 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | C8166 / C8166 NL4-3 |
Location of target site | ENST00000290551.4 | 3UTR | UGCUAUUUACCAAACACUCUCCCUACCCAUUCCUG |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 23592263 / GSE59944 |
CLIP-seq Viewer | Link |
MiRNA-Target Expression Profile | |||||||
---|---|---|---|---|---|---|---|
|
MiRNA-Target Expression Profile (TCGA) | |||||||
---|---|---|---|---|---|---|---|
|
88 hsa-miR-6871-3p Target Genes:
Functional analysis:
ID | Target | Description | Validation methods | |||||||||
Strong evidence | Less strong evidence | |||||||||||
MIRT061678 | BTG2 | BTG anti-proliferation factor 2 | 2 | 4 | ||||||||
MIRT116181 | NUFIP2 | NUFIP2, FMR1 interacting protein 2 | 2 | 2 | ||||||||
MIRT150139 | MIDN | midnolin | 2 | 2 | ||||||||
MIRT197058 | NKIRAS2 | NFKB inhibitor interacting Ras like 2 | 2 | 2 | ||||||||
MIRT225108 | GOLGA7 | golgin A7 | 2 | 2 | ||||||||
MIRT376288 | CALM3 | calmodulin 3 | 2 | 2 | ||||||||
MIRT454810 | NEDD9 | neural precursor cell expressed, developmentally down-regulated 9 | 2 | 2 | ||||||||
MIRT464228 | VEGFA | vascular endothelial growth factor A | 2 | 6 | ||||||||
MIRT466961 | STAT3 | signal transducer and activator of transcription 3 | 2 | 2 | ||||||||
MIRT468219 | SGK1 | serum/glucocorticoid regulated kinase 1 | 2 | 2 | ||||||||
MIRT472460 | NASP | nuclear autoantigenic sperm protein | 2 | 2 | ||||||||
MIRT474203 | LEPRE1 | prolyl 3-hydroxylase 1 | 1 | 1 | ||||||||
MIRT475836 | HDGF | heparin binding growth factor | 2 | 4 | ||||||||
MIRT478667 | CTC1 | CST telomere replication complex component 1 | 2 | 14 | ||||||||
MIRT478707 | CSRNP2 | cysteine and serine rich nuclear protein 2 | 2 | 2 | ||||||||
MIRT478982 | COMMD2 | COMM domain containing 2 | 2 | 2 | ||||||||
MIRT479693 | CCNT2 | cyclin T2 | 2 | 6 | ||||||||
MIRT488440 | ULBP2 | UL16 binding protein 2 | 2 | 2 | ||||||||
MIRT492511 | RAET1L | retinoic acid early transcript 1L | 2 | 2 | ||||||||
MIRT492975 | NCS1 | neuronal calcium sensor 1 | 2 | 2 | ||||||||
MIRT494158 | COL4A1 | collagen type IV alpha 1 chain | 2 | 6 | ||||||||
MIRT495934 | SLC7A5P2 | solute carrier family 7 member 5 pseudogene 2 | 2 | 2 | ||||||||
MIRT496210 | PLEKHG2 | pleckstrin homology and RhoGEF domain containing G2 | 2 | 2 | ||||||||
MIRT496356 | PPY | pancreatic polypeptide | 2 | 2 | ||||||||
MIRT496385 | ZC3H6 | zinc finger CCCH-type containing 6 | 2 | 2 | ||||||||
MIRT496463 | DCTN5 | dynactin subunit 5 | 2 | 2 | ||||||||
MIRT497642 | GLDN | gliomedin | 2 | 2 | ||||||||
MIRT498496 | FRK | fyn related Src family tyrosine kinase | 2 | 2 | ||||||||
MIRT501928 | MCL1 | MCL1, BCL2 family apoptosis regulator | 2 | 8 | ||||||||
MIRT513286 | PDPK1 | 3-phosphoinositide dependent protein kinase 1 | 2 | 2 | ||||||||
MIRT514767 | RBM4B | RNA binding motif protein 4B | 2 | 2 | ||||||||
MIRT514916 | MDM2 | MDM2 proto-oncogene | 2 | 6 | ||||||||
MIRT515669 | LRRC27 | leucine rich repeat containing 27 | 2 | 2 | ||||||||
MIRT520367 | UBE2G2 | ubiquitin conjugating enzyme E2 G2 | 2 | 2 | ||||||||
MIRT523960 | DYNLT1 | dynein light chain Tctex-type 1 | 2 | 4 | ||||||||
MIRT526859 | KIFC1 | kinesin family member C1 | 2 | 2 | ||||||||
MIRT527673 | CASP8 | caspase 8 | 2 | 2 | ||||||||
MIRT527828 | TMEM74B | transmembrane protein 74B | 2 | 2 | ||||||||
MIRT529553 | EI24 | EI24, autophagy associated transmembrane protein | 2 | 2 | ||||||||
MIRT530547 | SYNPO | synaptopodin | 2 | 2 | ||||||||
MIRT531725 | TARS | threonyl-tRNA synthetase | 2 | 2 | ||||||||
MIRT533340 | UNC119B | unc-119 lipid binding chaperone B | 2 | 2 | ||||||||
MIRT533620 | TNFRSF13C | TNF receptor superfamily member 13C | 2 | 2 | ||||||||
MIRT537226 | GAN | gigaxonin | 2 | 2 | ||||||||
MIRT544430 | ZNF460 | zinc finger protein 460 | 2 | 4 | ||||||||
MIRT546905 | PTP4A1 | protein tyrosine phosphatase type IVA, member 1 | 2 | 2 | ||||||||
MIRT547102 | PLAG1 | PLAG1 zinc finger | 2 | 2 | ||||||||
MIRT547820 | ISG20L2 | interferon stimulated exonuclease gene 20 like 2 | 2 | 2 | ||||||||
MIRT548236 | FEM1B | fem-1 homolog B | 2 | 2 | ||||||||
MIRT550034 | WWTR1 | WW domain containing transcription regulator 1 | 2 | 2 | ||||||||
MIRT554337 | SH3GLB1 | SH3 domain containing GRB2 like, endophilin B1 | 2 | 4 | ||||||||
MIRT565483 | SPRTN | SprT-like N-terminal domain | 2 | 2 | ||||||||
MIRT568200 | CBX6 | chromobox 6 | 2 | 2 | ||||||||
MIRT569754 | C2orf71 | chromosome 2 open reading frame 71 | 2 | 2 | ||||||||
MIRT571369 | ZNF45 | zinc finger protein 45 | 2 | 2 | ||||||||
MIRT609886 | CLASP1 | cytoplasmic linker associated protein 1 | 2 | 4 | ||||||||
MIRT640543 | C3orf36 | chromosome 3 open reading frame 36 | 2 | 2 | ||||||||
MIRT640885 | ENTPD1 | ectonucleoside triphosphate diphosphohydrolase 1 | 2 | 2 | ||||||||
MIRT643494 | LRCH3 | leucine rich repeats and calponin homology domain containing 3 | 2 | 2 | ||||||||
MIRT643627 | YY2 | YY2 transcription factor | 2 | 2 | ||||||||
MIRT644384 | ZNF286A | zinc finger protein 286A | 2 | 2 | ||||||||
MIRT646126 | SLC26A9 | solute carrier family 26 member 9 | 2 | 2 | ||||||||
MIRT655939 | NDUFA4P1 | NDUFA4, mitochondrial complex associated pseudogene 1 | 2 | 2 | ||||||||
MIRT656057 | MYLK4 | myosin light chain kinase family member 4 | 2 | 2 | ||||||||
MIRT658767 | EIF4EBP2 | eukaryotic translation initiation factor 4E binding protein 2 | 2 | 2 | ||||||||
MIRT661583 | EPHX2 | epoxide hydrolase 2 | 2 | 2 | ||||||||
MIRT664285 | RNMTL1 | mitochondrial rRNA methyltransferase 3 | 2 | 2 | ||||||||
MIRT689391 | ZNF850 | zinc finger protein 850 | 2 | 2 | ||||||||
MIRT694530 | TRIM72 | tripartite motif containing 72 | 2 | 2 | ||||||||
MIRT694626 | ZFPM1 | zinc finger protein, FOG family member 1 | 2 | 2 | ||||||||
MIRT695133 | PRY2 | PTPN13-like, Y-linked 2 | 2 | 2 | ||||||||
MIRT695150 | PRY | PTPN13-like, Y-linked | 2 | 2 | ||||||||
MIRT697468 | ZC3H4 | zinc finger CCCH-type containing 4 | 2 | 2 | ||||||||
MIRT701919 | MLXIP | MLX interacting protein | 2 | 2 | ||||||||
MIRT704548 | CNBP | CCHC-type zinc finger nucleic acid binding protein | 2 | 2 | ||||||||
MIRT704791 | CDK6 | cyclin dependent kinase 6 | 2 | 2 | ||||||||
MIRT705696 | ANKRD13A | ankyrin repeat domain 13A | 2 | 2 | ||||||||
MIRT707992 | OTUD4 | OTU deubiquitinase 4 | 2 | 2 | ||||||||
MIRT708739 | FAM71F2 | family with sequence similarity 71 member F2 | 2 | 2 | ||||||||
MIRT713401 | FAM179A | TOG array regulator of axonemal microtubules 2 | 2 | 2 | ||||||||
MIRT713846 | FAM3D | family with sequence similarity 3 member D | 2 | 2 | ||||||||
MIRT716998 | ARL6IP4 | ADP ribosylation factor like GTPase 6 interacting protein 4 | 2 | 2 | ||||||||
MIRT718511 | DIRAS1 | DIRAS family GTPase 1 | 2 | 2 | ||||||||
MIRT718698 | BTBD9 | BTB domain containing 9 | 2 | 2 | ||||||||
MIRT719578 | TYRO3 | TYRO3 protein tyrosine kinase | 2 | 2 | ||||||||
MIRT720892 | CSGALNACT1 | chondroitin sulfate N-acetylgalactosaminyltransferase 1 | 2 | 2 | ||||||||
MIRT722633 | C8A | complement C8 alpha chain | 2 | 2 | ||||||||
MIRT723333 | DGAT1 | diacylglycerol O-acyltransferase 1 | 2 | 2 |
miRNA-Drug Resistance Associations | ||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|