pre-miRNA Information | |
---|---|
pre-miRNA | hsa-mir-628 |
Genomic Coordinates | chr15: 55372940 - 55373034 |
Synonyms | MIRN628, hsa-mir-628, MIR628 |
Description | Homo sapiens miR-628 stem-loop |
Comment | The mature sequence shown here represents the most commonly cloned form from large-scale cloning studies . |
RNA Secondary Structure | |
Associated Diseases |
Mature miRNA Information | |||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mature miRNA | hsa-miR-628-3p | ||||||||||||||||||||||||||||
Sequence | 61| UCUAGUAAGAGUGGCAGUCGA |81 | ||||||||||||||||||||||||||||
Evidence | Experimental | ||||||||||||||||||||||||||||
Experiments | Microarray | ||||||||||||||||||||||||||||
Editing Events in miRNAs |
|
DRVs in miRNA |
|
||||||||||||||||||||||||||
SNPs in miRNA |
|
||||||||||||||||||||||||||||
Putative Targets |
miRNA Expression profile | |
---|---|
Human miRNA Tissue Atlas | |
miRNAs in Extracellular Vesicles |
|
Circulating MicroRNA Expression Profiling |
Gene Information | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gene Symbol | ABT1 | ||||||||||||||||||||
Synonyms | Esf2, hABT1 | ||||||||||||||||||||
Description | activator of basal transcription 1 | ||||||||||||||||||||
Transcript | NM_013375 | ||||||||||||||||||||
Expression | |||||||||||||||||||||
Putative miRNA Targets on ABT1 | |||||||||||||||||||||
3'UTR of ABT1 (miRNA target sites are highlighted) |
>ABT1|NM_013375|3'UTR 1 GGGCCTGGGTGGCCCCTTCCATTTCCTGGCCCTGCTCTGCTTCCTGTCTACCTCATACTAGAATGATCGTGACTACCCGG 81 GCAGACATTTTACTGTGTTTCTCAGACCAAGTGTCTACTGATGGCCCAAACATGGAGTTTTGTGGGCTTCCACTGTCCCC 161 ACTCCGAACTCCTGTATGTGCCTGGCTGAGTCACCTAATTCATACTGTCATACTAGCATAATTATGACTATTGCATATGC 241 TTGTTTTGTTTGACTCTTGGCTGCCTACGTCTGTAGGGTCCCCTGAAAATCCCACTTCCTGCCCCCAGAAAGGGCCTTTA 321 TTTCCAACTAGGAGGATAATGCCTAGTCCAGGCAATCTTTCTCTGTTTAGCAGTCACAGGTGAGGGTGGTATTAGCATCT 401 TTTTTATGTAGAAAAAATTGAGTTAATGGGGTGGACTGGGTTGGGAAGAAATACATTTCCTAATGTATTTATAGAAAATA 481 AAAATATTTTTATGTGCCTTTTTATTTTTGTTGGTGGGGAGGTCATTGGACAAGTTCCAACTTTCATCTTGTGTTCCCTT 561 CACCTTCATATCCTGATCTTAGAGCCCCCCTCCCCCTGCCACCCACCTTACTGTTTAACCTGGATTTTTTTTTCTATTTA 641 ATTTTTGTCTAATATCTTAGCCCAGTTTATCAATCAGTTATCTTAAGTCAGCATTTTCTAAGCCATTGTTTGAGGAAACA 721 GTGACAATAGGTAATAACACATCTTAGTATTAAGAGTTTTACAGGCCACTAGTATAAGATAGGCATCGTGGTAGATGCAT 801 ATAAAGGGTGGAATGGGAGCCATGGCAGGTCATAGAGTCCTCTCAATGGGAACCTGATTGATGATCACAGTCTTCAGTGG 881 TGAGTCAGTCCTCACCAAGTTTTCCAGATCATTCCTACAAAGTAAACTGGGAGAATAATAAGTCTGAAAGAGTGTGGAGT 961 GCTCCCACAATTACAAAGAATGCTTCCTGGGTGGAGTGTTGAGTTGGAACCATTGTAAAGGTGGGCAAAGCCTAGTAGAG 1041 AACCAGTGCACCTCAGGTGCACTTACATATGGTGGGGCTGAGGCAAAGCAGCCCTGTAGGCTTCAAAGAATCAGTGTAAG 1121 CCACTAAAAGGAACTGAAAACCTAGGTGTCACAATAAACAGTCTACACAGTCTCACGTAGACCAAAATTCTGATCATTTT 1201 CCAGGCTGTTGCATGAAGTGATAGAGTATGATTATAATTTCTGTTTGCTTGTGCTGTTTGTTTTTGTTTTTCATCTGTCA 1281 ATGTGATGATCTGTGTTTTATAGGGTAGAGTGGATTTGTCTACTTTGGCTGTAAAATACCCTAATCACATTATGATCTTG 1361 ACAGGTGCACTTTACTGGGGAGAATAAAAAGGACCATACGGTAAA Target sites
Provided by authors
Predicted by miRanda
DRVs
SNPs
DRVs & SNPs
|
||||||||||||||||||||
miRNA-target interactions (Predicted by miRanda) |
|
||||||||||||||||||||
DRVs in gene 3'UTRs | |||||||||||||||||||||
SNPs in gene 3'UTRs |
Experimental Support 1 for Functional miRNA-Target Interaction | |||||||
---|---|---|---|---|---|---|---|
miRNA:Target | ---- | ||||||
Validation Method |
|
||||||
Conditions | HEK293 | ||||||
Disease | 29777.0 | ||||||
Location of target site | 3'UTR | ||||||
Tools used in this research | TargetScan , miRTarCLIP , Piranha | ||||||
Original Description (Extracted from the article) |
...
"PAR-CLIP data was present in GSM714645. RNA binding protein: AGO2. Condition:completeT1
"PAR-CLIP data was present in GSM714647. RNA binding protein: AGO2. Condition:mildMNase
... - Kishore S; Jaskiewicz L; Burger L; Hausser et al., 2011, Nature methods. |
||||||
miRNA-target interactions (Provided by authors) |
|
||||||
Article |
- Kishore S; Jaskiewicz L; Burger L; Hausser et al. - Nature methods, 2011
Cross-linking and immunoprecipitation (CLIP) is increasingly used to map transcriptome-wide binding sites of RNA-binding proteins. We developed a method for CLIP data analysis, and applied it to compare CLIP with photoactivatable ribonucleoside-enhanced CLIP (PAR-CLIP) and to uncover how differences in cross-linking and ribonuclease digestion affect the identified sites. We found only small differences in accuracies of these methods in identifying binding sites of HuR, which binds low-complexity sequences, and Argonaute 2, which has a complex binding specificity. We found that cross-link-induced mutations led to single-nucleotide resolution for both PAR-CLIP and CLIP. Our results confirm the expectation from original CLIP publications that RNA-binding proteins do not protect their binding sites sufficiently under the denaturing conditions used during the CLIP procedure, and we show that extensive digestion with sequence-specific RNases strongly biases the recovered binding sites. This bias can be substantially reduced by milder nuclease digestion conditions.
LinkOut: [PMID: 21572407]
|
Experimental Support 2 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | Hela |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
HITS-CLIP data was present in GSM1048187. RNA binding protein: AGO2. Condition:Hela_AGO2_CLIP_control
... - Xue Y; Ouyang K; Huang J; Zhou Y; Ouyang H; et al., 2013, Cell. |
Article |
- Xue Y; Ouyang K; Huang J; Zhou Y; Ouyang H; et al. - Cell, 2013
The induction of pluripotency or trans-differentiation of one cell type to another can be accomplished with cell-lineage-specific transcription factors. Here, we report that repression of a single RNA binding polypyrimidine-tract-binding (PTB) protein, which occurs during normal brain development via the action of miR-124, is sufficient to induce trans-differentiation of fibroblasts into functional neurons. Besides its traditional role in regulated splicing, we show that PTB has a previously undocumented function in the regulation of microRNA functions, suppressing or enhancing microRNA targeting by competitive binding on target mRNA or altering local RNA secondary structure. A key event during neuronal induction is the relief of PTB-mediated blockage of microRNA action on multiple components of the REST complex, thereby derepressing a large array of neuronal genes, including miR-124 and multiple neuronal-specific transcription factors, in nonneuronal cells. This converts a negative feedback loop to a positive one to elicit cellular reprogramming to the neuronal lineage.
LinkOut: [PMID: 23313552]
|
Experimental Support 3 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | C8166 |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in GSM1462572. RNA binding protein: AGO2. Condition:C8166 NL4-3
... - Whisnant AW; Bogerd HP; Flores O; Ho P; et al., 2013, mBio. |
Article |
- Whisnant AW; Bogerd HP; Flores O; Ho P; et al. - mBio, 2013
UNLABELLED: The question of how HIV-1 interfaces with cellular microRNA (miRNA) biogenesis and effector mechanisms has been highly controversial. Here, we first used deep sequencing of small RNAs present in two different infected cell lines (TZM-bl and C8166) and two types of primary human cells (CD4(+) peripheral blood mononuclear cells [PBMCs] and macrophages) to unequivocally demonstrate that HIV-1 does not encode any viral miRNAs. Perhaps surprisingly, we also observed that infection of T cells by HIV-1 has only a modest effect on the expression of cellular miRNAs at early times after infection. Comprehensive analysis of miRNA binding to the HIV-1 genome using the photoactivatable ribonucleoside-induced cross-linking and immunoprecipitation (PAR-CLIP) technique revealed several binding sites for cellular miRNAs, a subset of which were shown to be capable of mediating miRNA-mediated repression of gene expression. However, the main finding from this analysis is that HIV-1 transcripts are largely refractory to miRNA binding, most probably due to extensive viral RNA secondary structure. Together, these data demonstrate that HIV-1 neither encodes viral miRNAs nor strongly influences cellular miRNA expression, at least early after infection, and imply that HIV-1 transcripts have evolved to avoid inhibition by preexisting cellular miRNAs by adopting extensive RNA secondary structures that occlude most potential miRNA binding sites. IMPORTANCE: MicroRNAs (miRNAs) are a ubiquitous class of small regulatory RNAs that serve as posttranscriptional regulators of gene expression. Previous work has suggested that HIV-1 might subvert the function of the cellular miRNA machinery by expressing viral miRNAs or by dramatically altering the level of cellular miRNA expression. Using very sensitive approaches, we now demonstrate that neither of these ideas is in fact correct. Moreover, HIV-1 transcripts appear to largely avoid regulation by cellular miRNAs by adopting an extensive RNA secondary structure that occludes the ability of cellular miRNAs to interact with viral mRNAs. Together, these data suggest that HIV-1, rather than seeking to control miRNA function in infected cells, has instead evolved a mechanism to become largely invisible to cellular miRNA effector mechanisms.
LinkOut: [PMID: 23592263]
|
Experimental Support 4 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | MCF7 |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in SRR1045082. RNA binding protein: AGO2. Condition:Untreated
... - Farazi TA; Ten Hoeve JJ; Brown M; et al., 2014, Genome biology. |
Article |
- Farazi TA; Ten Hoeve JJ; Brown M; et al. - Genome biology, 2014
BACKGROUND: Various microRNAs (miRNAs) are up- or downregulated in tumors. However, the repression of cognate miRNA targets responsible for the phenotypic effects of this dysregulation in patients remains largely unexplored. To define miRNA targets and associated pathways, together with their relationship to outcome in breast cancer, we integrated patient-paired miRNA-mRNA expression data with a set of validated miRNA targets and pathway inference. RESULTS: To generate a biochemically-validated set of miRNA-binding sites, we performed argonaute-2 photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (AGO2-PAR-CLIP) in MCF7 cells. We then defined putative miRNA-target interactions using a computational model, which ranked and selected additional TargetScan-predicted interactions based on features of our AGO2-PAR-CLIP binding-site data. We subselected modeled interactions according to the abundance of their constituent miRNA and mRNA transcripts in tumors, and we took advantage of the variability of miRNA expression within molecular subtypes to detect miRNA repression. Interestingly, our data suggest that miRNA families control subtype-specific pathways; for example, miR-17, miR-19a, miR-25, and miR-200b show high miRNA regulatory activity in the triple-negative, basal-like subtype, whereas miR-22 and miR-24 do so in the HER2 subtype. An independent dataset validated our findings for miR-17 and miR-25, and showed a correlation between the expression levels of miR-182 targets and overall patient survival. Pathway analysis associated miR-17, miR-19a, and miR-200b with leukocyte transendothelial migration. CONCLUSIONS: We combined PAR-CLIP data with patient expression data to predict regulatory miRNAs, revealing potential therapeutic targets and prognostic markers in breast cancer.
LinkOut: [PMID: 24398324]
|
Experimental Support 5 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | Prostate Tissue |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in SRX1760583. RNA binding protein: AGO2. Condition:AGO-CLIP-LNCaP_A
PAR-CLIP data was present in SRX1760639. RNA binding protein: AGO2. Condition:AGO-CLIP-LNCaP-MDV_A
... - Hamilton MP; Rajapakshe KI; Bader DA; Cerne et al., 2016, Neoplasia (New York, N.Y.). |
Article |
- Hamilton MP; Rajapakshe KI; Bader DA; Cerne et al. - Neoplasia (New York, N.Y.), 2016
MicroRNA (miRNA) deregulation in prostate cancer (PCa) contributes to PCa initiation and metastatic progression. To comprehensively define the cancer-associated changes in miRNA targeting and function in commonly studied models of PCa, we performed photoactivatable ribonucleoside-enhanced cross-linking immunoprecipitation of the Argonaute protein in a panel of PCa cell lines modeling different stages of PCa progression. Using this comprehensive catalogue of miRNA targets, we analyzed miRNA targeting on known drivers of PCa and examined tissue-specific and stage-specific pathway targeting by miRNAs. We found that androgen receptor is the most frequently targeted PCa oncogene and that miR-148a targets the largest number of known PCa drivers. Globally, tissue-specific and stage-specific changes in miRNA targeting are driven by homeostatic response to active oncogenic pathways. Our findings indicate that, even in advanced PCa, the miRNA pool adapts to regulate continuing alterations in the cancer genome to balance oncogenic molecular changes. These findings are important because they are the first to globally characterize miRNA changes in PCa and demonstrate how the miRNA target spectrum responds to staged tumorigenesis.
LinkOut: [PMID: 27292025]
|
CLIP-seq Support 1 for dataset GSM1048187 | |
---|---|
Method / RBP | HITS-CLIP / AGO2 |
Cell line / Condition | Hela / Hela_AGO2_CLIP_control |
Location of target site | ENST00000274849.1 | 3UTR | CAUUUCCUGGCCCUGCUCUGCUUCCUGUCUACCUCAUA |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 23313552 / GSE42701 |
CLIP-seq Viewer | Link |
CLIP-seq Support 2 for dataset GSM714645 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | HEK293 / completeT1, repB |
Location of target site | ENST00000274849.1 | 3UTR | CUCUGCUUCCUGUCUACCUCAUACUAG |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 21572407 / GSE28865 |
CLIP-seq Viewer | Link |
CLIP-seq Support 3 for dataset GSM714647 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | HEK293 / mildMNase, repB |
Location of target site | ENST00000274849.1 | 3UTR | AUUUCCUGGCCCUGCUCUGCUUCCUGUCUACCUCAUACU |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 21572407 / GSE28865 |
CLIP-seq Viewer | Link |
CLIP-seq Support 4 for dataset SRR1045082 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | MCF7 / Untreated |
Location of target site | ENST00000274849.1 | 3UTR | CCCUGCUCUGCUUCCUGUCUACCUCAUACUAG |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 24398324 / SRX388831 |
CLIP-seq Viewer | Link |
CLIP-seq Support 5 for dataset GSM1462572 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | C8166 / C8166 NL4-3 |
Location of target site | ENST00000274849.1 | 3UTR | CCCUGCUCUGCUUCCUGUCUACCUCAUACUAG |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 23592263 / GSE59944 |
CLIP-seq Viewer | Link |
MiRNA-Target Expression Profile | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
MiRNA-Target Expression Profile (TCGA) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
27 hsa-miR-628-3p Target Genes:
Functional analysis:
ID | Target | Description | Validation methods | |||||||||
Strong evidence | Less strong evidence | |||||||||||
MIRT039584 | CDC14A | cell division cycle 14A | 1 | 1 | ||||||||
MIRT039585 | AGO1 | argonaute 1, RISC catalytic component | 2 | 3 | ||||||||
MIRT039586 | TGFBRAP1 | transforming growth factor beta receptor associated protein 1 | 1 | 1 | ||||||||
MIRT039587 | LRP6 | LDL receptor related protein 6 | 1 | 1 | ||||||||
MIRT071876 | BTF3L4 | basic transcription factor 3 like 4 | 2 | 2 | ||||||||
MIRT097443 | JMY | junction mediating and regulatory protein, p53 cofactor | 2 | 4 | ||||||||
MIRT100100 | ABT1 | activator of basal transcription 1 | 2 | 8 | ||||||||
MIRT147692 | CBX4 | chromobox 4 | 2 | 2 | ||||||||
MIRT408248 | PURA | purine rich element binding protein A | 2 | 2 | ||||||||
MIRT442047 | LRAT | lecithin retinol acyltransferase | 2 | 2 | ||||||||
MIRT444412 | RAB3IP | RAB3A interacting protein | 2 | 2 | ||||||||
MIRT452599 | REPIN1 | replication initiator 1 | 2 | 2 | ||||||||
MIRT469515 | RBFOX2 | RNA binding protein, fox-1 homolog 2 | 2 | 8 | ||||||||
MIRT498192 | AKR1B10 | aldo-keto reductase family 1 member B10 | 2 | 2 | ||||||||
MIRT500151 | CREBBP | CREB binding protein | 2 | 2 | ||||||||
MIRT507319 | FAM60A | SIN3-HDAC complex associated factor | 2 | 6 | ||||||||
MIRT508343 | ZNF273 | zinc finger protein 273 | 2 | 6 | ||||||||
MIRT520480 | TRIM13 | tripartite motif containing 13 | 2 | 2 | ||||||||
MIRT522461 | MMP16 | matrix metallopeptidase 16 | 2 | 4 | ||||||||
MIRT547116 | PHLPP2 | PH domain and leucine rich repeat protein phosphatase 2 | 2 | 2 | ||||||||
MIRT548675 | CRNKL1 | crooked neck pre-mRNA splicing factor 1 | 2 | 2 | ||||||||
MIRT553756 | TARBP2 | TARBP2, RISC loading complex RNA binding subunit | 2 | 4 | ||||||||
MIRT559437 | ARSJ | arylsulfatase family member J | 2 | 2 | ||||||||
MIRT610490 | GPC4 | glypican 4 | 2 | 2 | ||||||||
MIRT644682 | TMCO1 | transmembrane and coiled-coil domains 1 | 2 | 2 | ||||||||
MIRT658214 | FBXO21 | F-box protein 21 | 2 | 2 | ||||||||
MIRT756083 | TP53 | tumor protein p53 | 4 | 1 |
miRNA-Drug Resistance Associations | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|