pre-miRNA Information | |
---|---|
pre-miRNA | hsa-mir-6074 |
Genomic Coordinates | chr12: 66023620 - 66023726 |
Description | Homo sapiens miR-6074 stem-loop |
Comment | None |
RNA Secondary Structure |
Mature miRNA Information | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mature miRNA | hsa-miR-6074 | |||||||||||||||||||||
Sequence | 58| GAUAUUCAGAGGCUAGGUGG |77 | |||||||||||||||||||||
Evidence | Experimental | |||||||||||||||||||||
Experiments | SOLiD | |||||||||||||||||||||
SNPs in miRNA |
|
|||||||||||||||||||||
Putative Targets |
miRNA Expression profile | |
---|---|
Human miRNA Tissue Atlas | |
Circulating MicroRNA Expression Profiling |
Gene Information | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gene Symbol | ZBTB34 | ||||||||||||||||||||
Synonyms | ZNF918 | ||||||||||||||||||||
Description | zinc finger and BTB domain containing 34 | ||||||||||||||||||||
Transcript | NM_001099270 | ||||||||||||||||||||
Expression | |||||||||||||||||||||
Putative miRNA Targets on ZBTB34 | |||||||||||||||||||||
3'UTR of ZBTB34 (miRNA target sites are highlighted) |
>ZBTB34|NM_001099270|3'UTR 1 GATGGTAAAGAAGTGCACCCAAACAAAGCACATTAATCAATGCATATTTGTGATTTGCTTTGTTGTAATCTTTGGTTTTC 81 CCAACCATCTGGAAATCTCTTGGTCTCTTGGCAGTTTTTCTAAAGTTTCTGGATGGAACACTTCGTTGTGTTTATCCTTT 161 CCCCTGCCCTCCCTCCCCGAAGGAGCTCAAAGCATGAAGGGCAACGCATCCAGGGAAAACACAGGCTGACAGTATTCCTC 241 TTTGGCTGAACTCTTAATCCAAAATCTGCCAGTGATTTAGCTATGCCAACTGGTTGACCCTCCATTCTCTGCCAAGAGGC 321 ATACTCTTTCTCATTGTGTGCGCTGGCAGCAGTGCACTTCCACGGAGGGAGATTAGGATGCCGTCAGCTGATACAAATGG 401 GTAACCTTTTCTAATTTAAAATTCCTTTTAGGGGGTAGTTAGACAATTTATATATATATATAATAAAACTATTATTATAT 481 ATATAGTATATATACATTTTCAAATTTGATTTTATTCTGGTTGAGGTGAATGTAAGAGGAATATATAATTTAATACAATG 561 TGAACAGGGCTTCTGAGTCTATCTCATCCCTACCTAATATGTTAGGGTTTTGCCCCTTCATTTCCCTTACAAAAGAATGT 641 TAGTAGGTTTATATTAATCATTGTGTCCAAAAGCAAGCAAAGCAAATCACAGTGTTCACAGCTCTGCTTCATAACAAATA 721 CATAAACCAAATGCCATAAAATTTCTTCAACTCTAGTTGGAAACCGTTTGGAATTTTTGTTAGTTGTCCAGCAGGTAAGC 801 TGGATGACCTGTGGTGCTGACCTTTTTACATAGTGTAGTGTTATATTAGCCAACCCCAAAGGAGCAGTGGTTTTCAAGGT 881 TTTTACTGGCCTACAAATCTACCTTCATTCCGTACTGTAGAAACATACATACCAGGTAACTAAATCGAATCACTCTCTAT 961 CATGAGTTAGTACTCACTCGCACTTAAGGAAAGGGATTTGTAGTTCTGTCTACAAAATTCTCCAAGCAGTGTTGTGGTTT 1041 TTTTTGTTTTTGTTTTTTTTCTTTCTCTTTTCAAACAGCCAGTTCAGGTGCACAGCAACTTTTTCTACATGCAGTTCCCA 1121 GGGAAACTGCAGAACTTAGAATTTGTACTTTTTGTAAAGCTATACTCTATGGGAATTGCAAGCAATATATCTATCTTAGT 1201 ATTGTGTGTGCTAATGAGAGCCTCAGTGGCTCCCCCACTCTCTCAGTGTTTCCTGCTTAAAGAACCAACAGTTTAAAAGC 1281 CCTCTAAGATACTCTGTGTGTCACCAAATCTGTGTGTCACCATTTTTTGGTCATGTGGTGCTATTTTTGTTAAGTGTCTT 1361 TTTAGGTCAGTATAGTTGTAGAAAATGTGAAATCTGATGGTAATAATGAATTATAATTGTTTTCCTCTCTTGAGTTCATA 1441 GCTTGAAAAGAGACCTCAAAAGCATGTGCTGGCAAACACGTTACTGTATGAAAACATACCTGAGTCCATTTGAATAATGT 1521 TTTATTAGTACTTTCGGAAATGTCTTCAGTTCTGTATTGTGTTCACATACACAAACAGGCTTTACAAGATTGCTTCGGTA 1601 CTGTAAACTCTGGCAGAGAGTAATTTTGTAGGCAGTTTGGTGGTGAGTTTGTGCTGCAGGCTGCCTGTGGGATGTCAGCG 1681 TTCTGGTATCTGCCTGAGAACCTGGGCTCTGAGACGCACAACCAGTGCACCTCCATAGGAGAACAGTGCAGCCACCTAAA 1761 AGAAAAACGAACGAAGGACCAGCCTCAGAGGCTAGAAGTTAAAGGAATACAGAATTAGATGTTTGCTGGTTTTCTGTGCT 1841 TTTTTGGCTCCTAAAATACCAATGGTGGATTTGTTTTTGTTTTTGTTTTTTGTTTTGAGAAATAAAAAGTCATTCAAGCC 1921 CTTTGTGTGTAATAGCCCCCAGGGGTGGCAGCTGTGCAGTCGCATCTCTTTGGCACACAGGATCTGTTCACGTGTGAACT 2001 GCTGCGCTACACATCAGTGTTAACTCCCTACAGATTACACTCTAATCCCGCTGCTCCCGAGGAGCGGCTTTGCTAAATCG 2081 GGTATATAGTATATGCCTTTTTCCTCGTCAAACTGCCTAAGTAGGGGTTCGTTCTCTCCCTGAAGCACTTGTTCAACTCC 2161 TGTTAAAGCCGCGTGCCTCAAGGGGAGGCTGGACCCCAAGTGTTTACCCACTTAAATATGTTCTGGGGTTTCAGGTAAAT 2241 GTTTGTGGGTTTTTTTTTCCTTACATGAATAAGTTTGGTTTTGATTTTTTTTTAATTGAATGCAAAAAATTTGTGTTGTG 2321 ATACAAATTAAGTTTGTGACAAGAAATGCCCAAATCCAAGGACATAAGAGGTCAAGCTCAGGGAAGGAACCTCCTTTTCA 2401 CTCAGGCTTGGGGCCTCCAGCGAGGTTTCCAGAGCATTCCATGGTATGAGAGACAGTGAGGAGGGAGGGCACCTGGCGCG 2481 GGCACTTCCAGCGTCCTGGCTCTTGGCATTGTCCGTCTTAACCTTATTTACATGGAGTTCTTTGTATTTGTGAATCTGTT 2561 TAACTGGTTTGAGTTTACCAAAGAGTGACTTATCCAAAATTGTCTTTGACAAAAATATCCATTGCTTTGATTGTACAGTT 2641 CAGGTTCAAACATTGTAATGGGACTGTTAAGGGGCAGAAAATTGATTGAGTTTCTCTCTAAGAATCATGATTCCACATTT 2721 TGCAAGTTCCACTTGCTCCCATTCGTGTTGCTAACACTTTACCCTTTCCACTGCTCGCAGTGTTAAGAATGAATTCTCAA 2801 GCCATAACACAGTACTGTAAAGTTCCGCAGGGCTTCGAGGGAGGCAGCGCCTAGGCCAGCACGGAGCTGTGTAGCCTCTC 2881 TGAGCGTTCGCACTGTCATGCTTCCCAGGGGTGTGACTGGTGAGAGATTAACTCCATTCAGATCGGGCAGCAGCAATTAA 2961 TTGTGCCTTGCCGCATGAGGATGTGTCAGGAGGATTAACATGACCACAGAACCGAAACATTCTCTCCCTGAAGTTCACTT 3041 CACGTCTCCGCAGACGAAGTACGCTGTGTAACTCCTTAGAGCAACTCTTTTTGGAAAGCAAAGTCCCTATTTCTGTACAG 3121 TTTTAGGTTAGGTGTTTCATTTATAACAGATGCAGAAATCAATTAAGATAAAGTGATATGTGAAGAAATCTTTTACAGTA 3201 AAATATATCCTGAATTCATATAGGCTTGTTCATAATTGAGTCTCTTCTTGAGCTACCTTTTCAATATTAGACAATGTGAA 3281 GACAGTGACAGCGTCCTTTTCTAGAGATATTTAGCCTGTTATTACAAACTGTGAAGACAAAGAATTTTATACTTTTACTA 3361 ATGTTTGTGGTTTTAAACAGTTATTTTCATTCTAATCAGTTCTCTACCCTCTAATTTCTACTAAAGCTGTAAATACATTT 3441 AGAAATTATATTTGTAAATACAGTATATGGAGACAAGTTAATTTTTTGGTCAGTGGAAAAAGCCTCCCAACCAATTGGCC 3521 CTGCCTTGGCAGTTGTGTTTTTTGTTGTTGTTGTTGTTGTTTTAGTTTAGTTTTTTTTTTTAAACAGCAGAAAGGATACT 3601 GTCGGTTCACTGTTGAGCAGAATATACTGTAGAACGAAAATGATAATTTTTAAATCTTCCAGAGCATGAGTAAATGTCTT 3681 TTCTAATGATAGCAAATATAACCAACTCTTTGTTTTTCCCTTAGCCCAGACCATATAGACCTGCGTATTTTGTGTGTGGT 3761 TTTGTTTTTATTTTTGTTCTTACAGCCTAGACCCTAGGAAAAATTTGCAGGAACACGAAACAAGGGCTGGGGGGAAAATC 3841 ATCTATGTGAATGAGCTTTACTTTAAAGAGATCAATGTATTTTATTTTATCAACTTTTTCTCTTAGTTACTGTGATTTTT 3921 GTTGTTGTTGTCCTCGTTATTGTTAAATTCTGTAATGGTTTCCTGTGAAGCCTCCACTGAAAGGGACTCAAATATGCAAC 4001 ACCTAAACTATTTTCCAAGGGCACATGCCCCTTGAATGGTGCTTCTAGACTGGTCAGGGTTATTTATTAAATTTTATATA 4081 TGAAAGTATTGGGGAATTATGTAAATTCTTTATATGAAACTATCTAGTTCATAAATCATAGATTTCATATTACTCAGTGC 4161 AACTGAACTAAAAGTTCAGAAAAGTCATTCACATTGTTCCAAATTTGTAATGGTTGTCACATGTCACATGCGTCTTTTTC 4241 AGTAAGTGCCAGAGTGTTCCCACTGTTTCTGCCCAGTGCTTGACTTCTCGGCCCGGAAGAGAACCTGCTTTCTCTGGTTT 4321 CCTTCCTGAGTCTGGCACAGACGGGGCTATTGTAGTTCTTGATCAAGTCCTGGAGTCAGCCTTGCCTGGCTCTCCTTGTA 4401 GCAGATTCAGTCCACAGACCTCTTGCTGCCCCTCAGTGACAAGTATGCTGTGAATTCAACCTTTGGACTTGCTGCCCAAG 4481 CCTTTGGTTGCTGCCCTGACTATTGTAAGAGGTAAACTTACCTGGTTTGTTTGAGAATGACCATTTTCCTAATGTGAAAA 4561 CCATCTCTCTCACCACTTTTATTAGTAGGGCTAACATTTTTTTCCGTTATAAATGGTTGAGCAATTTGAATGACTTAACA 4641 CAGTGTCATTATCTTGCAATATAAACTGGTAACCTCACAACTCCACACTTCATCACCATATGAAGTAAATGAAGCTAGCT 4721 AAGCGGATGCTGTATCAACTAGTAACTTGCCATTAAGGATTATTTTATAGCATGAATTTAAGACTATTTATTCAAATGAT 4801 ATTTTACTCTTGTATTCACTTTGTTTTAGATTTGTGACATGAATATTTCAGTGCTGCTTAATTTTGTTCTGAATTCTTGT 4881 TTCTTGCTTGTAAATGGCTTTTTTATGGTATAAATAAAGTCAATGGACATTGCTGTTTGTAAATAAAAATGCTGCTAGAG 4961 CAAAAAAAAAAAAAAAA Target sites
Provided by authors
Predicted by miRanda
DRVs
SNPs
DRVs & SNPs
|
||||||||||||||||||||
miRNA-target interactions (Predicted by miRanda) |
|
||||||||||||||||||||
DRVs in gene 3'UTRs | |||||||||||||||||||||
SNPs in gene 3'UTRs |
Experimental Support 1 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | HEK293 |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in GSM545212. RNA binding protein: AGO1. Condition:Control
PAR-CLIP data was present in GSM545214. RNA binding protein: AGO3. Condition:Control
PAR-CLIP data was present in GSM545216. RNA binding protein: AGO2. Condition:miR-124 transfection
PAR-CLIP data was present in GSM545217. RNA binding protein: AGO2. Condition:miR-7 transfection
... - Hafner M; Landthaler M; Burger L; Khorshid et al., 2010, Cell. |
Article |
- Hafner M; Landthaler M; Burger L; Khorshid et al. - Cell, 2010
RNA transcripts are subject to posttranscriptional gene regulation involving hundreds of RNA-binding proteins (RBPs) and microRNA-containing ribonucleoprotein complexes (miRNPs) expressed in a cell-type dependent fashion. We developed a cell-based crosslinking approach to determine at high resolution and transcriptome-wide the binding sites of cellular RBPs and miRNPs. The crosslinked sites are revealed by thymidine to cytidine transitions in the cDNAs prepared from immunopurified RNPs of 4-thiouridine-treated cells. We determined the binding sites and regulatory consequences for several intensely studied RBPs and miRNPs, including PUM2, QKI, IGF2BP1-3, AGO/EIF2C1-4 and TNRC6A-C. Our study revealed that these factors bind thousands of sites containing defined sequence motifs and have distinct preferences for exonic versus intronic or coding versus untranslated transcript regions. The precise mapping of binding sites across the transcriptome will be critical to the interpretation of the rapidly emerging data on genetic variation between individuals and how these variations contribute to complex genetic diseases.
LinkOut: [PMID: 20371350]
|
Experimental Support 2 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | HEK293 |
Disease | 403341.0 |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
"HITS-CLIP data was present in GSM714642. RNA binding protein: AGO2. Condition:completeT1
"PAR-CLIP data was present in GSM714644. RNA binding protein: AGO2. Condition:completeT1
"PAR-CLIP data was present in GSM714645. RNA binding protein: AGO2. Condition:completeT1
... - Kishore S; Jaskiewicz L; Burger L; Hausser et al., 2011, Nature methods. |
Article |
- Kishore S; Jaskiewicz L; Burger L; Hausser et al. - Nature methods, 2011
Cross-linking and immunoprecipitation (CLIP) is increasingly used to map transcriptome-wide binding sites of RNA-binding proteins. We developed a method for CLIP data analysis, and applied it to compare CLIP with photoactivatable ribonucleoside-enhanced CLIP (PAR-CLIP) and to uncover how differences in cross-linking and ribonuclease digestion affect the identified sites. We found only small differences in accuracies of these methods in identifying binding sites of HuR, which binds low-complexity sequences, and Argonaute 2, which has a complex binding specificity. We found that cross-link-induced mutations led to single-nucleotide resolution for both PAR-CLIP and CLIP. Our results confirm the expectation from original CLIP publications that RNA-binding proteins do not protect their binding sites sufficiently under the denaturing conditions used during the CLIP procedure, and we show that extensive digestion with sequence-specific RNases strongly biases the recovered binding sites. This bias can be substantially reduced by milder nuclease digestion conditions.
LinkOut: [PMID: 21572407]
|
Experimental Support 3 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | HEK293 |
Disease | 403341.0 |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
"PAR-CLIP data was present in GSM1065667. RNA binding protein: AGO1. Condition:4-thiouridine
"PAR-CLIP data was present in GSM1065668. RNA binding protein: AGO1. Condition:4-thiouridine
"PAR-CLIP data was present in GSM1065669. RNA binding protein: AGO1. Condition:4-thiouridine
"PAR-CLIP data was present in GSM1065670. RNA binding protein: AGO2. Condition:4-thiouridine
... - Memczak S; Jens M; Elefsinioti A; Torti F; et al., 2013, Nature. |
Article |
- Memczak S; Jens M; Elefsinioti A; Torti F; et al. - Nature, 2013
Circular RNAs (circRNAs) in animals are an enigmatic class of RNA with unknown function. To explore circRNAs systematically, we sequenced and computationally analysed human, mouse and nematode RNA. We detected thousands of well-expressed, stable circRNAs, often showing tissue/developmental-stage-specific expression. Sequence analysis indicated important regulatory functions for circRNAs. We found that a human circRNA, antisense to the cerebellar degeneration-related protein 1 transcript (CDR1as), is densely bound by microRNA (miRNA) effector complexes and harbours 63 conserved binding sites for the ancient miRNA miR-7. Further analyses indicated that CDR1as functions to bind miR-7 in neuronal tissues. Human CDR1as expression in zebrafish impaired midbrain development, similar to knocking down miR-7, suggesting that CDR1as is a miRNA antagonist with a miRNA-binding capacity ten times higher than any other known transcript. Together, our data provide evidence that circRNAs form a large class of post-transcriptional regulators. Numerous circRNAs form by head-to-tail splicing of exons, suggesting previously unrecognized regulatory potential of coding sequences.
LinkOut: [PMID: 23446348]
|
Experimental Support 4 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | MCF7 |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in SRR1045082. RNA binding protein: AGO2. Condition:Untreated
... - Farazi TA; Ten Hoeve JJ; Brown M; et al., 2014, Genome biology. |
Article |
- Farazi TA; Ten Hoeve JJ; Brown M; et al. - Genome biology, 2014
BACKGROUND: Various microRNAs (miRNAs) are up- or downregulated in tumors. However, the repression of cognate miRNA targets responsible for the phenotypic effects of this dysregulation in patients remains largely unexplored. To define miRNA targets and associated pathways, together with their relationship to outcome in breast cancer, we integrated patient-paired miRNA-mRNA expression data with a set of validated miRNA targets and pathway inference. RESULTS: To generate a biochemically-validated set of miRNA-binding sites, we performed argonaute-2 photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (AGO2-PAR-CLIP) in MCF7 cells. We then defined putative miRNA-target interactions using a computational model, which ranked and selected additional TargetScan-predicted interactions based on features of our AGO2-PAR-CLIP binding-site data. We subselected modeled interactions according to the abundance of their constituent miRNA and mRNA transcripts in tumors, and we took advantage of the variability of miRNA expression within molecular subtypes to detect miRNA repression. Interestingly, our data suggest that miRNA families control subtype-specific pathways; for example, miR-17, miR-19a, miR-25, and miR-200b show high miRNA regulatory activity in the triple-negative, basal-like subtype, whereas miR-22 and miR-24 do so in the HER2 subtype. An independent dataset validated our findings for miR-17 and miR-25, and showed a correlation between the expression levels of miR-182 targets and overall patient survival. Pathway analysis associated miR-17, miR-19a, and miR-200b with leukocyte transendothelial migration. CONCLUSIONS: We combined PAR-CLIP data with patient expression data to predict regulatory miRNAs, revealing potential therapeutic targets and prognostic markers in breast cancer.
LinkOut: [PMID: 24398324]
|
CLIP-seq Support 1 for dataset GSM714642 | |
---|---|
Method / RBP | HITS-CLIP / AGO2 |
Cell line / Condition | HEK293 / completeT1, repA |
Location of target site | ENST00000319119.4 | 3UTR | AAUAUUUCAGUGCUGCUUAAUUUUG |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 21572407 / GSE28865 |
CLIP-seq Viewer | Link |
CLIP-seq Support 2 for dataset GSM545212 | |
---|---|
Method / RBP | PAR-CLIP / AGO1 |
Cell line / Condition | HEK293 / Control |
Location of target site | ENST00000319119.4 | 3UTR | AAUAUUUCAGUGCUGCUUAAUUUU |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 20371350 / GSE21578 |
CLIP-seq Viewer | Link |
CLIP-seq Support 3 for dataset GSM545214 | |
---|---|
Method / RBP | PAR-CLIP / AGO3 |
Cell line / Condition | HEK293 / Control |
Location of target site | ENST00000319119.4 | 3UTR | AAUAUUUCAGUGCUGCUUAAUUU |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 20371350 / GSE21578 |
CLIP-seq Viewer | Link |
CLIP-seq Support 4 for dataset GSM545216 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | HEK293 / miR-124 transfection |
Location of target site | ENST00000319119.4 | 3UTR | AAUAUUUCAGUGCUGCUUAAUUUU |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 20371350 / GSE21578 |
CLIP-seq Viewer | Link |
CLIP-seq Support 5 for dataset GSM545217 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | HEK293 / miR-7 transfection |
Location of target site | ENST00000319119.4 | 3UTR | AAUAUUUCAGUGCUGCUUAAUUU |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 20371350 / GSE21578 |
CLIP-seq Viewer | Link |
CLIP-seq Support 6 for dataset GSM714644 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | HEK293 / completeT1, repA |
Location of target site | ENST00000319119.4 | 3UTR | ACAUGAAUAUUUCAGUGCUGCUUAAUUUUG |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 21572407 / GSE28865 |
CLIP-seq Viewer | Link |
CLIP-seq Support 7 for dataset GSM714645 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | HEK293 / completeT1, repB |
Location of target site | ENST00000319119.4 | 3UTR | AAUAUUUCAGUGCUGCUUAAUUUUG |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 21572407 / GSE28865 |
CLIP-seq Viewer | Link |
CLIP-seq Support 8 for dataset GSM1065667 | |
---|---|
Method / RBP | PAR-CLIP / AGO1 |
Cell line / Condition | HEK293 / 4-thiouridine, ML_MM_6 |
Location of target site | ENST00000319119.4 | 3UTR | UUUGUGACAUGAAUAUUUCAGUGCUGCUUAAUUUUG |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 23446348 / GSE43573 |
CLIP-seq Viewer | Link |
CLIP-seq Support 9 for dataset GSM1065668 | |
---|---|
Method / RBP | PAR-CLIP / AGO1 |
Cell line / Condition | HEK293 / 4-thiouridine, ML_MM_7 |
Location of target site | ENST00000319119.4 | 3UTR | AAUAUUUCAGUGCUGCUUA |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 23446348 / GSE43573 |
CLIP-seq Viewer | Link |
CLIP-seq Support 10 for dataset GSM1065669 | |
---|---|
Method / RBP | PAR-CLIP / AGO1 |
Cell line / Condition | HEK293 / 4-thiouridine, ML_MM_8 |
Location of target site | ENST00000319119.4 | 3UTR | AAUAUUUCAGUGCUGCUUAAUUUU |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 23446348 / GSE43573 |
CLIP-seq Viewer | Link |
CLIP-seq Support 11 for dataset GSM1065670 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | HEK293 / 4-thiouridine, 3_ML_LG |
Location of target site | ENST00000319119.4 | 3UTR | ACAUGAAUAUUUCAGUGCUGCUUAAUUUUG |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 23446348 / GSE43573 |
CLIP-seq Viewer | Link |
CLIP-seq Support 12 for dataset SRR1045082 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | MCF7 / Untreated |
Location of target site | ENST00000319119.4 | 3UTR | AAUAUUUCAGUGCUGCUUAAUUUUG |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 24398324 / SRX388831 |
CLIP-seq Viewer | Link |
MiRNA-Target Expression Profile | |||||||
---|---|---|---|---|---|---|---|
|
MiRNA-Target Expression Profile (TCGA) | |||||||
---|---|---|---|---|---|---|---|
|
80 hsa-miR-6074 Target Genes:
Functional analysis:
ID | Target | Description | Validation methods | |||||||||
Strong evidence | Less strong evidence | |||||||||||
MIRT058706 | SLC16A1 | solute carrier family 16 member 1 | 2 | 2 | ||||||||
MIRT089462 | TET3 | tet methylcytosine dioxygenase 3 | 2 | 2 | ||||||||
MIRT092698 | C3ORF38 | chromosome 3 open reading frame 38 | 2 | 6 | ||||||||
MIRT096831 | ZSWIM6 | zinc finger SWIM-type containing 6 | 2 | 6 | ||||||||
MIRT097124 | TNPO1 | transportin 1 | 2 | 2 | ||||||||
MIRT107230 | ZBTB34 | zinc finger and BTB domain containing 34 | 2 | 8 | ||||||||
MIRT166796 | PAPD7 | poly(A) RNA polymerase D7, non-canonical | 2 | 4 | ||||||||
MIRT169322 | CD2AP | CD2 associated protein | 2 | 2 | ||||||||
MIRT179021 | PAFAH1B2 | platelet activating factor acetylhydrolase 1b catalytic subunit 2 | 2 | 4 | ||||||||
MIRT216040 | IL6ST | interleukin 6 signal transducer | 2 | 10 | ||||||||
MIRT229145 | ZBTB33 | zinc finger and BTB domain containing 33 | 2 | 2 | ||||||||
MIRT232247 | SLC38A1 | solute carrier family 38 member 1 | 2 | 6 | ||||||||
MIRT235585 | SNRPB2 | small nuclear ribonucleoprotein polypeptide B2 | 2 | 8 | ||||||||
MIRT249602 | MPP5 | membrane palmitoylated protein 5 | 2 | 2 | ||||||||
MIRT265086 | CHEK1 | checkpoint kinase 1 | 2 | 2 | ||||||||
MIRT290931 | PMAIP1 | phorbol-12-myristate-13-acetate-induced protein 1 | 2 | 6 | ||||||||
MIRT297112 | RGPD4 | RANBP2-like and GRIP domain containing 4 | 2 | 2 | ||||||||
MIRT334773 | PPP1R15B | protein phosphatase 1 regulatory subunit 15B | 2 | 6 | ||||||||
MIRT344563 | RPL23A | ribosomal protein L23a | 2 | 6 | ||||||||
MIRT450908 | CADM2 | cell adhesion molecule 2 | 2 | 2 | ||||||||
MIRT450941 | BDP1 | B double prime 1, subunit of RNA polymerase III transcription initiation factor IIIB | 2 | 2 | ||||||||
MIRT456350 | OLIG3 | oligodendrocyte transcription factor 3 | 2 | 8 | ||||||||
MIRT466898 | STMN1 | stathmin 1 | 2 | 2 | ||||||||
MIRT470106 | PTEN | phosphatase and tensin homolog | 2 | 2 | ||||||||
MIRT471430 | PDIA6 | protein disulfide isomerase family A member 6 | 2 | 2 | ||||||||
MIRT477745 | EDN1 | endothelin 1 | 2 | 2 | ||||||||
MIRT478210 | DDX6 | DEAD-box helicase 6 | 2 | 2 | ||||||||
MIRT481531 | ARL5B | ADP ribosylation factor like GTPase 5B | 2 | 10 | ||||||||
MIRT482888 | CACNA2D3 | calcium voltage-gated channel auxiliary subunit alpha2delta 3 | 2 | 2 | ||||||||
MIRT486468 | MDM2 | MDM2 proto-oncogene | 2 | 10 | ||||||||
MIRT500286 | ZNF703 | zinc finger protein 703 | 2 | 8 | ||||||||
MIRT502857 | CHEK2 | checkpoint kinase 2 | 2 | 6 | ||||||||
MIRT504355 | VCAM1 | vascular cell adhesion molecule 1 | 2 | 8 | ||||||||
MIRT508279 | ADCYAP1 | adenylate cyclase activating polypeptide 1 | 2 | 8 | ||||||||
MIRT508529 | PTCH2 | patched 2 | 2 | 6 | ||||||||
MIRT509772 | SERTM1 | serine rich and transmembrane domain containing 1 | 2 | 6 | ||||||||
MIRT512269 | ARHGEF33 | Rho guanine nucleotide exchange factor 33 | 2 | 4 | ||||||||
MIRT514050 | AGO2 | argonaute 2, RISC catalytic component | 2 | 6 | ||||||||
MIRT516648 | TRPM6 | transient receptor potential cation channel subfamily M member 6 | 2 | 2 | ||||||||
MIRT520093 | YAF2 | YY1 associated factor 2 | 2 | 4 | ||||||||
MIRT520451 | TSPAN2 | tetraspanin 2 | 2 | 6 | ||||||||
MIRT521920 | PHIP | pleckstrin homology domain interacting protein | 2 | 6 | ||||||||
MIRT523959 | DYNLT1 | dynein light chain Tctex-type 1 | 2 | 4 | ||||||||
MIRT526799 | ZNF223 | zinc finger protein 223 | 2 | 2 | ||||||||
MIRT530972 | EXO5 | exonuclease 5 | 2 | 4 | ||||||||
MIRT532117 | G6PC | glucose-6-phosphatase catalytic subunit | 2 | 2 | ||||||||
MIRT532816 | MRPS10 | mitochondrial ribosomal protein S10 | 2 | 2 | ||||||||
MIRT534742 | RBFOX2 | RNA binding protein, fox-1 homolog 2 | 2 | 4 | ||||||||
MIRT545935 | ZBTB44 | zinc finger and BTB domain containing 44 | 2 | 4 | ||||||||
MIRT546348 | TBCEL | tubulin folding cofactor E like | 2 | 2 | ||||||||
MIRT547260 | NUMB | NUMB, endocytic adaptor protein | 2 | 2 | ||||||||
MIRT548232 | FGF2 | fibroblast growth factor 2 | 2 | 4 | ||||||||
MIRT549926 | NDUFB5 | NADH:ubiquinone oxidoreductase subunit B5 | 2 | 2 | ||||||||
MIRT550268 | GNL3 | G protein nucleolar 3 | 2 | 4 | ||||||||
MIRT553955 | SS18 | SS18, nBAF chromatin remodeling complex subunit | 2 | 2 | ||||||||
MIRT555238 | PRICKLE2 | prickle planar cell polarity protein 2 | 2 | 2 | ||||||||
MIRT555699 | PDZD8 | PDZ domain containing 8 | 2 | 2 | ||||||||
MIRT556135 | MFSD9 | major facilitator superfamily domain containing 9 | 2 | 4 | ||||||||
MIRT556233 | MASTL | microtubule associated serine/threonine kinase like | 2 | 2 | ||||||||
MIRT558033 | EXT1 | exostosin glycosyltransferase 1 | 2 | 2 | ||||||||
MIRT561374 | UBXN2B | UBX domain protein 2B | 2 | 2 | ||||||||
MIRT563066 | ZNF28 | zinc finger protein 28 | 2 | 4 | ||||||||
MIRT565175 | LINC00598 | long intergenic non-protein coding RNA 598 | 2 | 2 | ||||||||
MIRT567586 | FCHSD2 | FCH and double SH3 domains 2 | 2 | 2 | ||||||||
MIRT568006 | COMMD2 | COMM domain containing 2 | 2 | 2 | ||||||||
MIRT611487 | ADCYAP1R1 | ADCYAP receptor type I | 2 | 6 | ||||||||
MIRT614959 | HOMER1 | homer scaffolding protein 1 | 2 | 2 | ||||||||
MIRT619721 | FCF1 | FCF1, rRNA-processing protein | 2 | 2 | ||||||||
MIRT643215 | TYW3 | tRNA-yW synthesizing protein 3 homolog | 2 | 2 | ||||||||
MIRT654746 | PRKCB | protein kinase C beta | 2 | 2 | ||||||||
MIRT657189 | IKZF5 | IKAROS family zinc finger 5 | 2 | 2 | ||||||||
MIRT699133 | SMNDC1 | survival motor neuron domain containing 1 | 2 | 2 | ||||||||
MIRT707311 | KCNK1 | potassium two pore domain channel subfamily K member 1 | 2 | 2 | ||||||||
MIRT707405 | VENTX | VENT homeobox | 2 | 2 | ||||||||
MIRT707490 | XKR6 | XK related 6 | 2 | 2 | ||||||||
MIRT707787 | UNK | unkempt family zinc finger | 2 | 2 | ||||||||
MIRT711246 | TRAT1 | T-cell receptor associated transmembrane adaptor 1 | 2 | 2 | ||||||||
MIRT718746 | ATP9A | ATPase phospholipid transporting 9A (putative) | 2 | 2 | ||||||||
MIRT723779 | ROBO4 | roundabout guidance receptor 4 | 2 | 2 | ||||||||
MIRT724949 | TXNL1 | thioredoxin like 1 | 2 | 2 |
miRNA-Drug Resistance Associations | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|