pre-miRNA Information | |
---|---|
pre-miRNA | hsa-mir-2115 |
Genomic Coordinates | chr3: 48316360 - 48316459 |
Description | Homo sapiens miR-2115 stem-loop |
Comment | None |
RNA Secondary Structure |
Mature miRNA Information | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mature miRNA | hsa-miR-2115-3p | |||||||||
Sequence | 58| CAUCAGAAUUCAUGGAGGCUAG |79 | |||||||||
Evidence | Experimental | |||||||||
Experiments | 454 | DRVs in miRNA |
|
|||||||
SNPs in miRNA |
|
|||||||||
Putative Targets |
miRNA Expression profile | |
---|---|
miRNAs in Extracellular Vesicles |
|
Circulating MicroRNA Expression Profiling |
Gene Information | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gene Symbol | NUS1 | ||||||||||||||||||||
Synonyms | C6orf68, CDG1AA, MGC:7199, NgBR, TANGO14 | ||||||||||||||||||||
Description | NUS1 dehydrodolichyl diphosphate synthase subunit | ||||||||||||||||||||
Transcript | NM_138459 | ||||||||||||||||||||
Expression | |||||||||||||||||||||
Putative miRNA Targets on NUS1 | |||||||||||||||||||||
3'UTR of NUS1 (miRNA target sites are highlighted) |
>NUS1|NM_138459|3'UTR 1 TGGTCATTGGTTGCATAATTTGATTTGAGGCTTGTGGAGGAAAGGAACCAAGTGACTCTGATGTTTACAAAGCACCTATG 81 AAACCCTGTACACACCTAGTTCATAATCCTCATAATTTATCAACAAACACAAAAAAGTGTCTTACTTGAGAGTGAGTGTG 161 TGTGTGTGCGTGTGCACGTGCACACATGTGCACGTTTGTATGTATGGAAATAAACTTATAAATGGGGACGTATTGGAGAA 241 GGAAATACATAGACCTACAACTTTGAGCAAATAGCAGTGATGTTTTAGGAACTGAAATGTCACACTTAAAGTCTTCAGCC 321 CAGCTACTTCCCTATTTTTGTGGGGAGAAGAGGGCCTGATTAGAACTGTTCTGGTTGTGTTTGGCGGGAGGGGAATAATT 401 TTTGTTCAGTCCTTCTTAGTGACCAAACTTTAATTTTTAAGAATAATATATTGACTTACTGAACTGAAGCATTCTGAGTT 481 GAAAGGAGCTCCAGAGGAGTGGAGTTCTGTGTTGCTCACATGTTAAAATCTTGCTCACCTTCAGAGCAGAGGGAATACCT 561 ATCTTCAGATATCCGTCCATTTTCATCTCTTAATTGTAGTCAAAAGTATGACTTGAGAGTGTTGCTCTGGTATTCTGGGT 641 TCTGAAGTCTGGTATTCTGGTATTCTGGGTTCAAAAGTATGACTTGAGAGTGTTGCTCTGGTATTCTGAGAGTTGCTCTG 721 TATTCTGGGTTCTGAAGATTATTTGAAAAATAACTCCTACTACATTGAAATGCAGACTTAAAAATTTAAACATTGGATTA 801 GGCAGTCAAAAAAACCAAGCAAGCATAAAAGGTCAATAAGTTGTAATCTTGATAGTAAAGGTGGAAAACTTATTATAAAT 881 GGAAAGAAAGTTTTATTTCCTTTTTTGTTTGATGGGCAGTATGCCATATTATACCCAAAGTTCTTTTAAAAAATATTTCC 961 ATCAACCATTTTTATTTAAAATAAACATTTGAGGGAAGTTACCAAGGCAGCTTTTTTCCTCAAAAGTAACCTGTTCCTCT 1041 TTGGAATAGCACATTTTAGGGGCATGGTTAATACCTGAGATTTTTACTCAGTAAATCCTGATGGTTACTGTGTGTAAAAT 1121 ATCTTTAAGTAGGATTGAAGGCCTCTGTGGGGGAATAAAATATTACCAAAGTCTATAAAAATAAATTTTACATGTTCTCT 1201 TTTATGACAGAGAGCAGCACTGGTTCTGTTATTTTTAAAATGAATAATTGATTTCTTGATAGGTGTTTAATATTTCTTCC 1281 CTCACTGCTGATTCTTAGATAGAAACCATTCTTTATATTTGATAGACTGCTTTCAGAAAACCCTTATCAACAAGTGTACA 1361 ATACTTATCTAAAACTATACATTTAGAATGGAGCAGTTTAATACTAGATCTCAGAAGTTTTGAAAAATAGCAAAGAAGAC 1441 TGGATTTGGAAAGCATGGTCTACAATTGGTTGTTAAATTCTGAAGCTATGAAGAATAAATGTTTCAACTTTGGATTATGA 1521 AACCCCATTTATGATTTTTTAAATACACTTGAAATAAAAATGATTAAACTAAATTTTGGTCCAGTGACATTACTTTGCAC 1601 TGCATAATCCATTATACGTTGTACGACTTTTTTTTTTTGTTTTAATTTATTACTGAGAGTTTTGTGTGAAGCTACAGCAT 1681 ATCTAACCAGAGAATTTCTGATTCCTTATACTGTGATTATATTATATTGAGGCATTTGTAGTGCAGCTGAAGACTGAATT 1761 TATGCCTTTTGTAAACATGATAGGTATAAATGTCTTATAAACATTCTGGAGTATGTATAGCTTTAATGAATGAAATTTAA 1841 TGGACCTGATTAAAATGAAGGGATTTAATCGTTGTTAAAGTTAAGTTAGTCAAATAAATTACCTACTGGAATATAGCCCA 1921 AGCCAGTAAAGGTTTAATATTTGCATTTTCGTGCTTTTATTTTCTCCTTCCATTCATAAGTATATACTTGAAAGTACATC 2001 TGTAGCCTATGATTTGAGTCTCTTGAAGTTCTAGGAAGAGGCAAACTACAAACTACTAGGATTCTGATTTCAGATGTAGT 2081 CATTCCAGAACCTTCTCTTTATGAGTTCACCTGCTAGTACAATCTCCACAACTTGAATGGCATTGGTTGTTCTGTAATTC 2161 CTGCCAAAAGCATCACAAGTTGTACATCATCAAGGCTCCCTTTGCACTCCCAAGAAGAACTGGTAATTTTAAACAAAAGT 2241 ATGTGTCTTTATTTGTATTGGAAAATACTGTCTTTAAATTGTTTCTTGTTGACACTCCCCACAATGGAAAAATTACCGAA 2321 TTAAACCTGTTTTATGGATGGCAGCTTGGAGCATAGCAAGAAGTTGGAGGATTTGAATTCCATTCCCAGTTCTCATTGTG 2401 TTTTGTTTCTTAAAACTATAATAATCGGTTACTGTTATAAAGTTTAAAAGGTGGTTTTAATGTGAATAGCAAATTCTGGT 2481 ATATCGTGACTAACGCTTAAGAATGCCTGTCTTTGAGAGGAAGGTGTTATAATATTAATGAACAGTGCCAAATACACTGT 2561 GCATATCTGCAATTTAATCTTTGAATGTATGTTACTGGATTAGCTCCCTCCTCCTGTGTGATGGTACCATGCATAGAGTC 2641 AATCAAATCCTTGTGATGTTTTGTATGGACTTTGACAATATGTAAATAATGTGTAAAGCCAGTTTTTATGATTAAGGAAT 2721 CAAATTTATTGAATTTTATTATTGAAAGTTGAAACTTAACATGTATGAACAAAAACCAATAAAAGAATATACTCTTTTCA 2801 TTGACTATAGTATTATGTGAATGCTACATTTGTTCTGAACACTTAGGGGCTGCAAAAATGTAATAAGAAATGCATATGAC 2881 TAGATAGCAATAGTGTTTTTTTTAGATGGTATGCTCTTGATTGAAATATATTCTCACTTTTACCAGGTTAAACATTTGGA 2961 ATCTTATAATGTTACTTGCTTTTTGATAGATAATAGTGAAATAAATTCAGCTTTGCCATTGCTGGAGTTGTCAAAATTCC 3041 ACAGTAATTAAAATTTGAATTTTTACCGAATATGAAATTTCCAAATTAAAAACGTATATGTGTACTCTTTTAAAAAGGAA 3121 TTTGATAGTTCTTGTCAAATGAGAAAATTTAAAGGTAAGAGTTATGGTTTGTCTTATGCTGCATAGACTATTCACCTCCT 3201 AACTTGAAGGTCTAATCATAAGACAATTGTTTTTTTGTGCATAGTTTTCATCTAAAATTAAGTTTACCAAAGGCAAATAA 3281 CTGCTTACTAGGAACTTCCTTTAGCAAAAATTACTATAAAGTTCAGGACAGTTTGAAATAAAACCCAGGAAACAAGATTA 3361 ATGTGAGCAGTTCTCCAAGATCCTAACTGGTGGGACATAAACTATGATGCAATGGATAGGAAAAGGTAGTGCAAAAAGAA 3441 TTTCTTAAGGTTTAAAAAATACACTTTTCATTATAGGAAAAAGAAGATTCAGAGAAACAAAGGAATGTAACCTTATTGAT 3521 TACATTTTTGGTGATCACCGAGAATTTTTTGTACTATATTTTAAAAAATGTATTCTACTGTAACAAGTTAATAAAGAGAT 3601 TTTTTAAAAAACTATAAACTAGAAATTGAGAGTCTTGCATTCTCTTTTGTATTTGATTATTGTGTCTGGATATAAATTAC 3681 AATAGCACATGAAAATAAAATGTTTTAAAAAAAAAAAAAAAA Target sites
Provided by authors
Predicted by miRanda
DRVs
SNPs
DRVs & SNPs
|
||||||||||||||||||||
miRNA-target interactions (Predicted by miRanda) |
|
||||||||||||||||||||
DRVs in gene 3'UTRs | |||||||||||||||||||||
SNPs in gene 3'UTRs |
Experimental Support 1 for Functional miRNA-Target Interaction | |||||||
---|---|---|---|---|---|---|---|
miRNA:Target | ---- | ||||||
Validation Method |
|
||||||
Conditions | HEK293 | ||||||
Location of target site | 3'UTR | ||||||
Tools used in this research | TargetScan , miRTarCLIP , Piranha | ||||||
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in GSM545216. RNA binding protein: AGO2. Condition:miR-124 transfection
... - Hafner M; Landthaler M; Burger L; Khorshid et al., 2010, Cell. |
||||||
miRNA-target interactions (Provided by authors) |
|
||||||
Article |
- Hafner M; Landthaler M; Burger L; Khorshid et al. - Cell, 2010
RNA transcripts are subject to posttranscriptional gene regulation involving hundreds of RNA-binding proteins (RBPs) and microRNA-containing ribonucleoprotein complexes (miRNPs) expressed in a cell-type dependent fashion. We developed a cell-based crosslinking approach to determine at high resolution and transcriptome-wide the binding sites of cellular RBPs and miRNPs. The crosslinked sites are revealed by thymidine to cytidine transitions in the cDNAs prepared from immunopurified RNPs of 4-thiouridine-treated cells. We determined the binding sites and regulatory consequences for several intensely studied RBPs and miRNPs, including PUM2, QKI, IGF2BP1-3, AGO/EIF2C1-4 and TNRC6A-C. Our study revealed that these factors bind thousands of sites containing defined sequence motifs and have distinct preferences for exonic versus intronic or coding versus untranslated transcript regions. The precise mapping of binding sites across the transcriptome will be critical to the interpretation of the rapidly emerging data on genetic variation between individuals and how these variations contribute to complex genetic diseases.
LinkOut: [PMID: 20371350]
|
Experimental Support 2 for Functional miRNA-Target Interaction | |||||||
---|---|---|---|---|---|---|---|
miRNA:Target | ---- | ||||||
Validation Method |
|
||||||
Conditions | HEK293 | ||||||
Disease | 116150.0 | ||||||
Location of target site | 3'UTR | ||||||
Tools used in this research | TargetScan , miRTarCLIP , Piranha | ||||||
Original Description (Extracted from the article) |
...
"PAR-CLIP data was present in GSM714644. RNA binding protein: AGO2. Condition:completeT1
... - Kishore S; Jaskiewicz L; Burger L; Hausser et al., 2011, Nature methods. |
||||||
miRNA-target interactions (Provided by authors) |
|
||||||
Article |
- Kishore S; Jaskiewicz L; Burger L; Hausser et al. - Nature methods, 2011
Cross-linking and immunoprecipitation (CLIP) is increasingly used to map transcriptome-wide binding sites of RNA-binding proteins. We developed a method for CLIP data analysis, and applied it to compare CLIP with photoactivatable ribonucleoside-enhanced CLIP (PAR-CLIP) and to uncover how differences in cross-linking and ribonuclease digestion affect the identified sites. We found only small differences in accuracies of these methods in identifying binding sites of HuR, which binds low-complexity sequences, and Argonaute 2, which has a complex binding specificity. We found that cross-link-induced mutations led to single-nucleotide resolution for both PAR-CLIP and CLIP. Our results confirm the expectation from original CLIP publications that RNA-binding proteins do not protect their binding sites sufficiently under the denaturing conditions used during the CLIP procedure, and we show that extensive digestion with sequence-specific RNases strongly biases the recovered binding sites. This bias can be substantially reduced by milder nuclease digestion conditions.
LinkOut: [PMID: 21572407]
|
Experimental Support 3 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | TZM-bl |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in GSM1462574. RNA binding protein: AGO2. Condition:TZM-bl ami BaL
... - Whisnant AW; Bogerd HP; Flores O; Ho P; et al., 2013, mBio. |
Article |
- Whisnant AW; Bogerd HP; Flores O; Ho P; et al. - mBio, 2013
UNLABELLED: The question of how HIV-1 interfaces with cellular microRNA (miRNA) biogenesis and effector mechanisms has been highly controversial. Here, we first used deep sequencing of small RNAs present in two different infected cell lines (TZM-bl and C8166) and two types of primary human cells (CD4(+) peripheral blood mononuclear cells [PBMCs] and macrophages) to unequivocally demonstrate that HIV-1 does not encode any viral miRNAs. Perhaps surprisingly, we also observed that infection of T cells by HIV-1 has only a modest effect on the expression of cellular miRNAs at early times after infection. Comprehensive analysis of miRNA binding to the HIV-1 genome using the photoactivatable ribonucleoside-induced cross-linking and immunoprecipitation (PAR-CLIP) technique revealed several binding sites for cellular miRNAs, a subset of which were shown to be capable of mediating miRNA-mediated repression of gene expression. However, the main finding from this analysis is that HIV-1 transcripts are largely refractory to miRNA binding, most probably due to extensive viral RNA secondary structure. Together, these data demonstrate that HIV-1 neither encodes viral miRNAs nor strongly influences cellular miRNA expression, at least early after infection, and imply that HIV-1 transcripts have evolved to avoid inhibition by preexisting cellular miRNAs by adopting extensive RNA secondary structures that occlude most potential miRNA binding sites. IMPORTANCE: MicroRNAs (miRNAs) are a ubiquitous class of small regulatory RNAs that serve as posttranscriptional regulators of gene expression. Previous work has suggested that HIV-1 might subvert the function of the cellular miRNA machinery by expressing viral miRNAs or by dramatically altering the level of cellular miRNA expression. Using very sensitive approaches, we now demonstrate that neither of these ideas is in fact correct. Moreover, HIV-1 transcripts appear to largely avoid regulation by cellular miRNAs by adopting an extensive RNA secondary structure that occludes the ability of cellular miRNAs to interact with viral mRNAs. Together, these data suggest that HIV-1, rather than seeking to control miRNA function in infected cells, has instead evolved a mechanism to become largely invisible to cellular miRNA effector mechanisms.
LinkOut: [PMID: 23592263]
|
Experimental Support 4 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | MCF7 |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in SRR1045082. RNA binding protein: AGO2. Condition:Untreated
... - Farazi TA; Ten Hoeve JJ; Brown M; et al., 2014, Genome biology. |
Article |
- Farazi TA; Ten Hoeve JJ; Brown M; et al. - Genome biology, 2014
BACKGROUND: Various microRNAs (miRNAs) are up- or downregulated in tumors. However, the repression of cognate miRNA targets responsible for the phenotypic effects of this dysregulation in patients remains largely unexplored. To define miRNA targets and associated pathways, together with their relationship to outcome in breast cancer, we integrated patient-paired miRNA-mRNA expression data with a set of validated miRNA targets and pathway inference. RESULTS: To generate a biochemically-validated set of miRNA-binding sites, we performed argonaute-2 photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (AGO2-PAR-CLIP) in MCF7 cells. We then defined putative miRNA-target interactions using a computational model, which ranked and selected additional TargetScan-predicted interactions based on features of our AGO2-PAR-CLIP binding-site data. We subselected modeled interactions according to the abundance of their constituent miRNA and mRNA transcripts in tumors, and we took advantage of the variability of miRNA expression within molecular subtypes to detect miRNA repression. Interestingly, our data suggest that miRNA families control subtype-specific pathways; for example, miR-17, miR-19a, miR-25, and miR-200b show high miRNA regulatory activity in the triple-negative, basal-like subtype, whereas miR-22 and miR-24 do so in the HER2 subtype. An independent dataset validated our findings for miR-17 and miR-25, and showed a correlation between the expression levels of miR-182 targets and overall patient survival. Pathway analysis associated miR-17, miR-19a, and miR-200b with leukocyte transendothelial migration. CONCLUSIONS: We combined PAR-CLIP data with patient expression data to predict regulatory miRNAs, revealing potential therapeutic targets and prognostic markers in breast cancer.
LinkOut: [PMID: 24398324]
|
CLIP-seq Support 1 for dataset GSM545216 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | HEK293 / miR-124 transfection |
Location of target site | ENST00000368494.3 | 3UTR | AUUCCUUAUACUGUGAUUAUAUUAUAUUG |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 20371350 / GSE21578 |
CLIP-seq Viewer | Link |
CLIP-seq Support 2 for dataset GSM714644 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | HEK293 / completeT1, repA |
Location of target site | ENST00000368494.3 | 3UTR | AUUCCUUAUACUGUGAUUAUAUUAUAUUGAGGCAUUUG |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 21572407 / GSE28865 |
CLIP-seq Viewer | Link |
CLIP-seq Support 3 for dataset SRR1045082 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | MCF7 / Untreated |
Location of target site | ENST00000368494.3 | 3UTR | AUUCCUUAUACUGUGAUUAUAUUAUAUUG |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 24398324 / SRX388831 |
CLIP-seq Viewer | Link |
CLIP-seq Support 4 for dataset GSM1462574 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | TZM-bl / TZM-bl ami BaL |
Location of target site | ENST00000368494.3 | 3UTR | AUUCCUUAUACUGUGAUUAUAUUAUAUUGAGGCAUUUG |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 23592263 / GSE59944 |
CLIP-seq Viewer | Link |
MiRNA-Target Expression Profile | |||||||
---|---|---|---|---|---|---|---|
|
MiRNA-Target Expression Profile (TCGA) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
80 hsa-miR-2115-3p Target Genes:
Functional analysis:
ID | Target | Description | Validation methods | |||||||||
Strong evidence | Less strong evidence | |||||||||||
MIRT057089 | DDIT4 | DNA damage inducible transcript 4 | 2 | 2 | ||||||||
MIRT071216 | FCF1 | FCF1, rRNA-processing protein | 2 | 2 | ||||||||
MIRT226901 | RAD23B | RAD23 homolog B, nucleotide excision repair protein | 2 | 2 | ||||||||
MIRT235961 | BACH1 | BTB domain and CNC homolog 1 | 2 | 2 | ||||||||
MIRT294569 | ZNF460 | zinc finger protein 460 | 2 | 4 | ||||||||
MIRT321046 | RAC1 | Rac family small GTPase 1 | 2 | 4 | ||||||||
MIRT359666 | NUS1 | NUS1 dehydrodolichyl diphosphate synthase subunit | 2 | 8 | ||||||||
MIRT366451 | KLHL15 | kelch like family member 15 | 2 | 2 | ||||||||
MIRT405375 | ZBTB18 | zinc finger and BTB domain containing 18 | 2 | 2 | ||||||||
MIRT441794 | TCEAL5 | transcription elongation factor A like 5 | 2 | 2 | ||||||||
MIRT443295 | TCEAL3 | transcription elongation factor A like 3 | 2 | 2 | ||||||||
MIRT455275 | DDX39B | DExD-box helicase 39B | 2 | 2 | ||||||||
MIRT458523 | C5orf22 | chromosome 5 open reading frame 22 | 2 | 2 | ||||||||
MIRT464960 | TWIST1 | twist family bHLH transcription factor 1 | 2 | 2 | ||||||||
MIRT466848 | STX6 | syntaxin 6 | 2 | 2 | ||||||||
MIRT469252 | RHOB | ras homolog family member B | 2 | 2 | ||||||||
MIRT469825 | RAB14 | RAB14, member RAS oncogene family | 2 | 4 | ||||||||
MIRT470047 | PTGFRN | prostaglandin F2 receptor inhibitor | 2 | 2 | ||||||||
MIRT471420 | PDP2 | pyruvate dehyrogenase phosphatase catalytic subunit 2 | 2 | 2 | ||||||||
MIRT472024 | NPM1 | nucleophosmin 1 | 2 | 2 | ||||||||
MIRT484156 | CENPN | centromere protein N | 2 | 2 | ||||||||
MIRT485490 | HMGN2 | high mobility group nucleosomal binding domain 2 | 2 | 2 | ||||||||
MIRT490462 | PROSER2 | proline and serine rich 2 | 2 | 2 | ||||||||
MIRT493069 | MTCH1 | mitochondrial carrier 1 | 2 | 2 | ||||||||
MIRT493573 | HSP90AA1 | heat shock protein 90 alpha family class A member 1 | 2 | 8 | ||||||||
MIRT494919 | NDUFC2-KCTD14 | NDUFC2-KCTD14 readthrough | 2 | 2 | ||||||||
MIRT500439 | ZMAT3 | zinc finger matrin-type 3 | 2 | 2 | ||||||||
MIRT500931 | SRPR | SRP receptor alpha subunit | 2 | 4 | ||||||||
MIRT501551 | POC1B-GALNT4 | POC1B-GALNT4 readthrough | 2 | 2 | ||||||||
MIRT501809 | NEURL1B | neuralized E3 ubiquitin protein ligase 1B | 2 | 2 | ||||||||
MIRT502415 | GALNT4 | polypeptide N-acetylgalactosaminyltransferase 4 | 2 | 2 | ||||||||
MIRT506504 | MSANTD4 | Myb/SANT DNA binding domain containing 4 with coiled-coils | 2 | 2 | ||||||||
MIRT507861 | CCNE2 | cyclin E2 | 2 | 2 | ||||||||
MIRT510511 | YOD1 | YOD1 deubiquitinase | 2 | 6 | ||||||||
MIRT516073 | RAB42 | RAB42, member RAS oncogene family | 2 | 2 | ||||||||
MIRT519030 | KYNU | kynureninase | 2 | 6 | ||||||||
MIRT521762 | PPIL1 | peptidylprolyl isomerase like 1 | 2 | 4 | ||||||||
MIRT522898 | KCNJ3 | potassium voltage-gated channel subfamily J member 3 | 2 | 4 | ||||||||
MIRT527370 | MGARP | mitochondria localized glutamic acid rich protein | 2 | 2 | ||||||||
MIRT530691 | C8orf46 | chromosome 8 open reading frame 46 | 2 | 2 | ||||||||
MIRT530867 | TRUB1 | TruB pseudouridine synthase family member 1 | 2 | 2 | ||||||||
MIRT531832 | MTPAP | mitochondrial poly(A) polymerase | 2 | 4 | ||||||||
MIRT533035 | ZBTB5 | zinc finger and BTB domain containing 5 | 2 | 2 | ||||||||
MIRT533165 | WIPF2 | WAS/WASL interacting protein family member 2 | 2 | 2 | ||||||||
MIRT533464 | TRIM71 | tripartite motif containing 71 | 2 | 2 | ||||||||
MIRT534331 | SHCBP1 | SHC binding and spindle associated 1 | 2 | 2 | ||||||||
MIRT539372 | ADSS | adenylosuccinate synthase | 2 | 6 | ||||||||
MIRT545951 | ZBTB10 | zinc finger and BTB domain containing 10 | 2 | 2 | ||||||||
MIRT553283 | TSR1 | TSR1, ribosome maturation factor | 2 | 2 | ||||||||
MIRT553532 | TMEM185B | transmembrane protein 185B | 2 | 4 | ||||||||
MIRT556480 | LIPA | lipase A, lysosomal acid type | 2 | 2 | ||||||||
MIRT556975 | HSPA4L | heat shock protein family A (Hsp70) member 4 like | 2 | 2 | ||||||||
MIRT557697 | GATA6 | GATA binding protein 6 | 2 | 2 | ||||||||
MIRT558901 | CCDC58 | coiled-coil domain containing 58 | 2 | 2 | ||||||||
MIRT559224 | BLMH | bleomycin hydrolase | 2 | 2 | ||||||||
MIRT559827 | SLPI | secretory leukocyte peptidase inhibitor | 2 | 2 | ||||||||
MIRT563435 | SLC3A2 | solute carrier family 3 member 2 | 2 | 2 | ||||||||
MIRT569270 | PCDH11X | protocadherin 11 X-linked | 2 | 2 | ||||||||
MIRT571386 | JKAMP | JNK1/MAPK8-associated membrane protein | 2 | 2 | ||||||||
MIRT572567 | AFF1 | AF4/FMR2 family member 1 | 2 | 2 | ||||||||
MIRT610400 | AR | androgen receptor | 2 | 2 | ||||||||
MIRT611058 | ZNF621 | zinc finger protein 621 | 2 | 2 | ||||||||
MIRT635118 | TMEM233 | transmembrane protein 233 | 2 | 2 | ||||||||
MIRT641617 | DEFB118 | defensin beta 118 | 2 | 2 | ||||||||
MIRT642146 | CHORDC1 | cysteine and histidine rich domain containing 1 | 2 | 2 | ||||||||
MIRT647295 | C8orf33 | chromosome 8 open reading frame 33 | 2 | 2 | ||||||||
MIRT648155 | MPLKIP | M-phase specific PLK1 interacting protein | 2 | 2 | ||||||||
MIRT652780 | TENM3 | teneurin transmembrane protein 3 | 2 | 2 | ||||||||
MIRT657356 | HNRNPA2B1 | heterogeneous nuclear ribonucleoprotein A2/B1 | 2 | 2 | ||||||||
MIRT658718 | ELN | elastin | 2 | 2 | ||||||||
MIRT662441 | RALGAPA1 | Ral GTPase activating protein catalytic alpha subunit 1 | 2 | 2 | ||||||||
MIRT665302 | ZBTB38 | zinc finger and BTB domain containing 38 | 2 | 2 | ||||||||
MIRT699898 | RUNX1 | runt related transcription factor 1 | 2 | 2 | ||||||||
MIRT700921 | PDS5A | PDS5 cohesin associated factor A | 2 | 2 | ||||||||
MIRT700992 | PDE3A | phosphodiesterase 3A | 2 | 2 | ||||||||
MIRT707397 | DCAF4L1 | DDB1 and CUL4 associated factor 4 like 1 | 2 | 2 | ||||||||
MIRT711895 | INSIG2 | insulin induced gene 2 | 2 | 2 | ||||||||
MIRT712072 | XRCC5 | X-ray repair cross complementing 5 | 2 | 2 | ||||||||
MIRT716121 | PTPLAD2 | 3-hydroxyacyl-CoA dehydratase 4 | 1 | 1 | ||||||||
MIRT724470 | SMAD2 | SMAD family member 2 | 2 | 2 |
miRNA-Drug Resistance Associations | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|