pre-miRNA Information | |
---|---|
pre-miRNA | hsa-mir-6501 |
Genomic Coordinates | chr21: 33550662 - 33550728 |
Description | Homo sapiens miR-6501 stem-loop |
Comment | None |
RNA Secondary Structure |
Mature miRNA Information | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mature miRNA | hsa-miR-6501-5p | |||||||||||||||
Sequence | 3| AGUUGCCAGGGCUGCCUUUGGU |24 | |||||||||||||||
Evidence | Experimental | |||||||||||||||
Experiments | Illumina | DRVs in miRNA |
|
|||||||||||||
SNPs in miRNA |
|
|||||||||||||||
Putative Targets |
miRNA Expression profile | |
---|---|
Human miRNA Tissue Atlas | |
Circulating MicroRNA Expression Profiling |
Gene Information | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gene Symbol | NUCB1 | ||||||||||||||||||||
Synonyms | CALNUC, NUC | ||||||||||||||||||||
Description | nucleobindin 1 | ||||||||||||||||||||
Transcript | NM_006184 | ||||||||||||||||||||
Expression | |||||||||||||||||||||
Putative miRNA Targets on NUCB1 | |||||||||||||||||||||
3'UTR of NUCB1 (miRNA target sites are highlighted) |
>NUCB1|NM_006184|3'UTR 1 TCCTCCGGGACCCCAGCCCTCAGGATTCCTGATGCTCCAAGGCGACTGATGGGCGCTGGATGAAGTGGCACAGTCAGCTT 81 CCCTGGGGGCTGGTGTCATGTTGGGCTCCTGGGGCGGGGGCACGGCCTGGCATTTCACGCATTGCTGCCACCCCAGGTCC 161 ACCTGTCTCCACTTTCACAGCCTCCAAGTCTGTGGCTCTTCCCTTCTGTCCTCCGAGGGGCTTGCCTTCTCTCGTGTCCA 241 GTGAGGTGCTCAGTGATCGGCTTAACTTAGAGAAGCCCGCCCCCTCCCCTTCTCCGTCTGTCCCAAGAGGGTCTGCTCTG 321 AGCCTGCGTTCCTAGGTGGCTCGGCCTCAGCTGCCTGGGTTGTGGCCGCCCTAGCATCCTGTATGCCCACAGCTACTGGA 401 ATCCCCGCTGCTGCTCCGGGCCAAGCTTCTGGTTGATTAATGAGGGCATGGGGTGGTCCCTCAAGACCTTCCCCTACCTT 481 TTGTGGAACCAGTGATGCCTCAAAGACAGTGTCCCCTCCACAGCTGGGTGCCAGGGGCAGGGGATCCTCAGTATAGCCGG 561 TGAACCCTGATACCAGGAGCCTGGGCCTCCCTGAACCCCTGGCTTCCAGCCATCTCATCGCCAGCCTCCTCCTGGACCTC 641 TTGGCCCCCAGCCCCTTCCCCACACAGCCCCAGAAGGGTCCCAGAGCTGACCCCACTCCAGGACCTAGGCCCAGCCCCTC 721 AGCCTCATCTGGAGCCCCTGAAGACCAGTCCCACCCACCTTTCTGGCCTCATCTGACACTGCTCCGCATCCTGCTGTGTG 801 TCCTGTTCCATGTTCCGGTTCCATCCAAATACACTTTCTGGAACAAATGCATGGCTCCAAAAAAA Target sites
Provided by authors
Predicted by miRanda
DRVs
SNPs
DRVs & SNPs
|
||||||||||||||||||||
miRNA-target interactions (Predicted by miRanda) |
|
||||||||||||||||||||
DRVs in gene 3'UTRs | |||||||||||||||||||||
SNPs in gene 3'UTRs |
Experimental Support 1 for Functional miRNA-Target Interaction | |||||||
---|---|---|---|---|---|---|---|
miRNA:Target | ---- | ||||||
Validation Method |
|
||||||
Conditions | HEK293 | ||||||
Location of target site | 3'UTR | ||||||
Tools used in this research | TargetScan , miRTarCLIP , Piranha | ||||||
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in GSM545214. RNA binding protein: AGO3. Condition:Control
... - Hafner M; Landthaler M; Burger L; Khorshid et al., 2010, Cell. |
||||||
miRNA-target interactions (Provided by authors) |
|
||||||
Article |
- Hafner M; Landthaler M; Burger L; Khorshid et al. - Cell, 2010
RNA transcripts are subject to posttranscriptional gene regulation involving hundreds of RNA-binding proteins (RBPs) and microRNA-containing ribonucleoprotein complexes (miRNPs) expressed in a cell-type dependent fashion. We developed a cell-based crosslinking approach to determine at high resolution and transcriptome-wide the binding sites of cellular RBPs and miRNPs. The crosslinked sites are revealed by thymidine to cytidine transitions in the cDNAs prepared from immunopurified RNPs of 4-thiouridine-treated cells. We determined the binding sites and regulatory consequences for several intensely studied RBPs and miRNPs, including PUM2, QKI, IGF2BP1-3, AGO/EIF2C1-4 and TNRC6A-C. Our study revealed that these factors bind thousands of sites containing defined sequence motifs and have distinct preferences for exonic versus intronic or coding versus untranslated transcript regions. The precise mapping of binding sites across the transcriptome will be critical to the interpretation of the rapidly emerging data on genetic variation between individuals and how these variations contribute to complex genetic diseases.
LinkOut: [PMID: 20371350]
|
Experimental Support 2 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | HEK293 |
Disease | 4924.0 |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
"HITS-CLIP data was present in GSM714642. RNA binding protein: AGO2. Condition:completeT1
"PAR-CLIP data was present in GSM714644. RNA binding protein: AGO2. Condition:completeT1
"PAR-CLIP data was present in GSM714645. RNA binding protein: AGO2. Condition:completeT1
"PAR-CLIP data was present in GSM714647. RNA binding protein: AGO2. Condition:mildMNase
... - Kishore S; Jaskiewicz L; Burger L; Hausser et al., 2011, Nature methods. |
Article |
- Kishore S; Jaskiewicz L; Burger L; Hausser et al. - Nature methods, 2011
Cross-linking and immunoprecipitation (CLIP) is increasingly used to map transcriptome-wide binding sites of RNA-binding proteins. We developed a method for CLIP data analysis, and applied it to compare CLIP with photoactivatable ribonucleoside-enhanced CLIP (PAR-CLIP) and to uncover how differences in cross-linking and ribonuclease digestion affect the identified sites. We found only small differences in accuracies of these methods in identifying binding sites of HuR, which binds low-complexity sequences, and Argonaute 2, which has a complex binding specificity. We found that cross-link-induced mutations led to single-nucleotide resolution for both PAR-CLIP and CLIP. Our results confirm the expectation from original CLIP publications that RNA-binding proteins do not protect their binding sites sufficiently under the denaturing conditions used during the CLIP procedure, and we show that extensive digestion with sequence-specific RNases strongly biases the recovered binding sites. This bias can be substantially reduced by milder nuclease digestion conditions.
LinkOut: [PMID: 21572407]
|
Experimental Support 3 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | HEK293 |
Disease | 4924.0 |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
"PAR-CLIP data was present in GSM1065667. RNA binding protein: AGO1. Condition:4-thiouridine
... - Memczak S; Jens M; Elefsinioti A; Torti F; et al., 2013, Nature. |
Article |
- Memczak S; Jens M; Elefsinioti A; Torti F; et al. - Nature, 2013
Circular RNAs (circRNAs) in animals are an enigmatic class of RNA with unknown function. To explore circRNAs systematically, we sequenced and computationally analysed human, mouse and nematode RNA. We detected thousands of well-expressed, stable circRNAs, often showing tissue/developmental-stage-specific expression. Sequence analysis indicated important regulatory functions for circRNAs. We found that a human circRNA, antisense to the cerebellar degeneration-related protein 1 transcript (CDR1as), is densely bound by microRNA (miRNA) effector complexes and harbours 63 conserved binding sites for the ancient miRNA miR-7. Further analyses indicated that CDR1as functions to bind miR-7 in neuronal tissues. Human CDR1as expression in zebrafish impaired midbrain development, similar to knocking down miR-7, suggesting that CDR1as is a miRNA antagonist with a miRNA-binding capacity ten times higher than any other known transcript. Together, our data provide evidence that circRNAs form a large class of post-transcriptional regulators. Numerous circRNAs form by head-to-tail splicing of exons, suggesting previously unrecognized regulatory potential of coding sequences.
LinkOut: [PMID: 23446348]
|
Experimental Support 4 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | TZM-bl |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in GSM1462574. RNA binding protein: AGO2. Condition:TZM-bl ami BaL
... - Whisnant AW; Bogerd HP; Flores O; Ho P; et al., 2013, mBio. |
Article |
- Whisnant AW; Bogerd HP; Flores O; Ho P; et al. - mBio, 2013
UNLABELLED: The question of how HIV-1 interfaces with cellular microRNA (miRNA) biogenesis and effector mechanisms has been highly controversial. Here, we first used deep sequencing of small RNAs present in two different infected cell lines (TZM-bl and C8166) and two types of primary human cells (CD4(+) peripheral blood mononuclear cells [PBMCs] and macrophages) to unequivocally demonstrate that HIV-1 does not encode any viral miRNAs. Perhaps surprisingly, we also observed that infection of T cells by HIV-1 has only a modest effect on the expression of cellular miRNAs at early times after infection. Comprehensive analysis of miRNA binding to the HIV-1 genome using the photoactivatable ribonucleoside-induced cross-linking and immunoprecipitation (PAR-CLIP) technique revealed several binding sites for cellular miRNAs, a subset of which were shown to be capable of mediating miRNA-mediated repression of gene expression. However, the main finding from this analysis is that HIV-1 transcripts are largely refractory to miRNA binding, most probably due to extensive viral RNA secondary structure. Together, these data demonstrate that HIV-1 neither encodes viral miRNAs nor strongly influences cellular miRNA expression, at least early after infection, and imply that HIV-1 transcripts have evolved to avoid inhibition by preexisting cellular miRNAs by adopting extensive RNA secondary structures that occlude most potential miRNA binding sites. IMPORTANCE: MicroRNAs (miRNAs) are a ubiquitous class of small regulatory RNAs that serve as posttranscriptional regulators of gene expression. Previous work has suggested that HIV-1 might subvert the function of the cellular miRNA machinery by expressing viral miRNAs or by dramatically altering the level of cellular miRNA expression. Using very sensitive approaches, we now demonstrate that neither of these ideas is in fact correct. Moreover, HIV-1 transcripts appear to largely avoid regulation by cellular miRNAs by adopting an extensive RNA secondary structure that occludes the ability of cellular miRNAs to interact with viral mRNAs. Together, these data suggest that HIV-1, rather than seeking to control miRNA function in infected cells, has instead evolved a mechanism to become largely invisible to cellular miRNA effector mechanisms.
LinkOut: [PMID: 23592263]
|
Experimental Support 5 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | HEK293/HeLa |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
HITS-CLIP data was present in GSM1067869. RNA binding protein: AGO2. Condition:Ago2 IP-seq (asynchronous cells)
... - Kishore S; Gruber AR; Jedlinski DJ; Syed et al., 2013, Genome biology. |
Article |
- Kishore S; Gruber AR; Jedlinski DJ; Syed et al. - Genome biology, 2013
BACKGROUND: In recent years, a variety of small RNAs derived from other RNAs with well-known functions such as tRNAs and snoRNAs, have been identified. The functional relevance of these RNAs is largely unknown. To gain insight into the complexity of snoRNA processing and the functional relevance of snoRNA-derived small RNAs, we sequence long and short RNAs, small RNAs that co-precipitate with the Argonaute 2 protein and RNA fragments obtained in photoreactive nucleotide-enhanced crosslinking and immunoprecipitation (PAR-CLIP) of core snoRNA-associated proteins. RESULTS: Analysis of these data sets reveals that many loci in the human genome reproducibly give rise to C/D box-like snoRNAs, whose expression and evolutionary conservation are typically less pronounced relative to the snoRNAs that are currently cataloged. We further find that virtually all C/D box snoRNAs are specifically processed inside the regions of terminal complementarity, retaining in the mature form only 4-5 nucleotides upstream of the C box and 2-5 nucleotides downstream of the D box. Sequencing of the total and Argonaute 2-associated populations of small RNAs reveals that despite their cellular abundance, C/D box-derived small RNAs are not efficiently incorporated into the Ago2 protein. CONCLUSIONS: We conclude that the human genome encodes a large number of snoRNAs that are processed along the canonical pathway and expressed at relatively low levels. Generation of snoRNA-derived processing products with alternative, particularly miRNA-like, functions appears to be uncommon.
LinkOut: [PMID: 23706177]
|
Experimental Support 6 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | Prostate Tissue |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in SRX1760583. RNA binding protein: AGO2. Condition:AGO-CLIP-LNCaP_A
... - Hamilton MP; Rajapakshe KI; Bader DA; Cerne et al., 2016, Neoplasia (New York, N.Y.). |
Article |
- Hamilton MP; Rajapakshe KI; Bader DA; Cerne et al. - Neoplasia (New York, N.Y.), 2016
MicroRNA (miRNA) deregulation in prostate cancer (PCa) contributes to PCa initiation and metastatic progression. To comprehensively define the cancer-associated changes in miRNA targeting and function in commonly studied models of PCa, we performed photoactivatable ribonucleoside-enhanced cross-linking immunoprecipitation of the Argonaute protein in a panel of PCa cell lines modeling different stages of PCa progression. Using this comprehensive catalogue of miRNA targets, we analyzed miRNA targeting on known drivers of PCa and examined tissue-specific and stage-specific pathway targeting by miRNAs. We found that androgen receptor is the most frequently targeted PCa oncogene and that miR-148a targets the largest number of known PCa drivers. Globally, tissue-specific and stage-specific changes in miRNA targeting are driven by homeostatic response to active oncogenic pathways. Our findings indicate that, even in advanced PCa, the miRNA pool adapts to regulate continuing alterations in the cancer genome to balance oncogenic molecular changes. These findings are important because they are the first to globally characterize miRNA changes in PCa and demonstrate how the miRNA target spectrum responds to staged tumorigenesis.
LinkOut: [PMID: 27292025]
|
CLIP-seq Support 1 for dataset GSM714642 | |
---|---|
Method / RBP | HITS-CLIP / AGO2 |
Cell line / Condition | HEK293 / completeT1, repA |
Location of target site | ENST00000405315.4 | 3UTR | AGCCUGGGCAACAUAGCGAGACCCCGUCUCAGA |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 21572407 / GSE28865 |
CLIP-seq Viewer | Link |
CLIP-seq Support 2 for dataset GSM1067869 | |
---|---|
Method / RBP | HITS-CLIP / AGO2 |
Cell line / Condition | HEK293/HeLa / Ago2 IP-seq (asynchronous cells) |
Location of target site | ENST00000405315.4 | 3UTR | AGCCUGGGCAACAUAGCGAGACCCCGUCUCA |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 23706177 / GSE43666 |
CLIP-seq Viewer | Link |
CLIP-seq Support 3 for dataset GSM545214 | |
---|---|
Method / RBP | PAR-CLIP / AGO3 |
Cell line / Condition | HEK293 / Control |
Location of target site | ENST00000405315.4 | 3UTR | CAACAUAGCGAGACCCCGUCU |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 20371350 / GSE21578 |
CLIP-seq Viewer | Link |
CLIP-seq Support 4 for dataset GSM714644 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | HEK293 / completeT1, repA |
Location of target site | ENST00000405315.4 | 3UTR | AGCCUGGGCAACAUAGCGAGACCCCGUCUCAGA |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 21572407 / GSE28865 |
CLIP-seq Viewer | Link |
CLIP-seq Support 5 for dataset GSM714645 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | HEK293 / completeT1, repB |
Location of target site | ENST00000405315.4 | 3UTR | UGGGCAACAUAGCGAGACCCCGUCUCAG |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 21572407 / GSE28865 |
CLIP-seq Viewer | Link |
CLIP-seq Support 6 for dataset GSM714647 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | HEK293 / mildMNase, repB |
Location of target site | ENST00000405315.4 | 3UTR | AGCCUGGGCAACAUAGCGAGACCCCGUCUC |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 21572407 / GSE28865 |
CLIP-seq Viewer | Link |
CLIP-seq Support 7 for dataset GSM1065667 | |
---|---|
Method / RBP | PAR-CLIP / AGO1 |
Cell line / Condition | HEK293 / 4-thiouridine, ML_MM_6 |
Location of target site | ENST00000405315.4 | 3UTR | CCUGGGCAACAUAGCGAGACCCCGUCUCA |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 23446348 / GSE43573 |
CLIP-seq Viewer | Link |
CLIP-seq Support 8 for dataset GSM1462574 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | TZM-bl / TZM-bl ami BaL |
Location of target site | ENST00000405315.4 | 3UTR | CUGGGCAACAUAGCGAGACCCCGUCUCAG |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 23592263 / GSE59944 |
CLIP-seq Viewer | Link |
MiRNA-Target Expression Profile | |||||||
---|---|---|---|---|---|---|---|
|
MiRNA-Target Expression Profile (TCGA) | |||||||
---|---|---|---|---|---|---|---|
|
ID | Target | Description | Validation methods | |||||||||
Strong evidence | Less strong evidence | |||||||||||
MIRT156859 | FAM126B | family with sequence similarity 126 member B | 2 | 2 | ||||||||
MIRT173355 | TP53INP1 | tumor protein p53 inducible nuclear protein 1 | 2 | 2 | ||||||||
MIRT369102 | CHAC1 | ChaC glutathione specific gamma-glutamylcyclotransferase 1 | 2 | 2 | ||||||||
MIRT442037 | TRPV2 | transient receptor potential cation channel subfamily V member 2 | 2 | 2 | ||||||||
MIRT442829 | AZIN1 | antizyme inhibitor 1 | 2 | 2 | ||||||||
MIRT443729 | CCND2 | cyclin D2 | 2 | 2 | ||||||||
MIRT453771 | NUCB1 | nucleobindin 1 | 2 | 10 | ||||||||
MIRT453875 | IFRD1 | interferon related developmental regulator 1 | 2 | 12 | ||||||||
MIRT454229 | OSBPL10 | oxysterol binding protein like 10 | 2 | 11 | ||||||||
MIRT458829 | RPUSD2 | RNA pseudouridylate synthase domain containing 2 | 2 | 2 | ||||||||
MIRT459898 | PIGO | phosphatidylinositol glycan anchor biosynthesis class O | 2 | 10 | ||||||||
MIRT464162 | VMP1 | vacuole membrane protein 1 | 2 | 15 | ||||||||
MIRT495411 | SMAD2 | SMAD family member 2 | 2 | 2 | ||||||||
MIRT496906 | TRIM56 | tripartite motif containing 56 | 2 | 2 | ||||||||
MIRT498653 | AP3B2 | adaptor related protein complex 3 beta 2 subunit | 2 | 6 | ||||||||
MIRT498706 | PGAM5 | PGAM family member 5, mitochondrial serine/threonine protein phosphatase | 2 | 10 | ||||||||
MIRT499308 | ZNF485 | zinc finger protein 485 | 2 | 6 | ||||||||
MIRT499707 | NFATC2IP | nuclear factor of activated T-cells 2 interacting protein | 2 | 10 | ||||||||
MIRT499755 | CIRH1A | UTP4, small subunit processome component | 2 | 6 | ||||||||
MIRT499827 | PCSK9 | proprotein convertase subtilisin/kexin type 9 | 2 | 8 | ||||||||
MIRT503691 | MAVS | mitochondrial antiviral signaling protein | 2 | 2 | ||||||||
MIRT512418 | LAYN | layilin | 2 | 4 | ||||||||
MIRT516232 | RAB3B | RAB3B, member RAS oncogene family | 2 | 2 | ||||||||
MIRT522554 | MCAM | melanoma cell adhesion molecule | 2 | 4 | ||||||||
MIRT523760 | FBXO27 | F-box protein 27 | 2 | 4 | ||||||||
MIRT525107 | PRKD2 | protein kinase D2 | 2 | 2 | ||||||||
MIRT525919 | KIAA0391 | KIAA0391 | 2 | 2 | ||||||||
MIRT527246 | COMMD6 | COMM domain containing 6 | 2 | 2 | ||||||||
MIRT527564 | ADCY7 | adenylate cyclase 7 | 2 | 2 | ||||||||
MIRT528764 | CD1D | CD1d molecule | 2 | 2 | ||||||||
MIRT529362 | YWHAB | tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein beta | 2 | 4 | ||||||||
MIRT529464 | ZNF546 | zinc finger protein 546 | 2 | 2 | ||||||||
MIRT530676 | CHRNB1 | cholinergic receptor nicotinic beta 1 subunit | 2 | 4 | ||||||||
MIRT531635 | C19orf52 | translocase of inner mitochondrial membrane 29 | 2 | 4 | ||||||||
MIRT531909 | SLC4A1 | solute carrier family 4 member 1 (Diego blood group) | 2 | 2 | ||||||||
MIRT532172 | SEC14L5 | SEC14 like lipid binding 5 | 2 | 4 | ||||||||
MIRT534234 | SLC25A16 | solute carrier family 25 member 16 | 2 | 4 | ||||||||
MIRT534561 | RRAGD | Ras related GTP binding D | 2 | 2 | ||||||||
MIRT534971 | PSD3 | pleckstrin and Sec7 domain containing 3 | 2 | 2 | ||||||||
MIRT536738 | HSPA4L | heat shock protein family A (Hsp70) member 4 like | 2 | 2 | ||||||||
MIRT538544 | CELF1 | CUGBP Elav-like family member 1 | 2 | 2 | ||||||||
MIRT540462 | ZNF71 | zinc finger protein 71 | 2 | 2 | ||||||||
MIRT540554 | PPIC | peptidylprolyl isomerase C | 2 | 2 | ||||||||
MIRT543593 | KIAA1549 | KIAA1549 | 2 | 2 | ||||||||
MIRT543963 | RNF20 | ring finger protein 20 | 2 | 2 | ||||||||
MIRT544047 | C9orf64 | chromosome 9 open reading frame 64 | 2 | 2 | ||||||||
MIRT544670 | AP1S1 | adaptor related protein complex 1 sigma 1 subunit | 2 | 2 | ||||||||
MIRT550665 | TRAF1 | TNF receptor associated factor 1 | 2 | 2 | ||||||||
MIRT558540 | CSNK1G3 | casein kinase 1 gamma 3 | 2 | 4 | ||||||||
MIRT574917 | Vmp1 | vacuole membrane protein 1 | 2 | 9 | ||||||||
MIRT575298 | Osbpl10 | oxysterol binding protein-like 10 | 2 | 7 | ||||||||
MIRT607960 | SNX22 | sorting nexin 22 | 2 | 2 | ||||||||
MIRT610649 | TIPRL | TOR signaling pathway regulator | 2 | 8 | ||||||||
MIRT615899 | GATAD1 | GATA zinc finger domain containing 1 | 2 | 2 | ||||||||
MIRT617438 | CCS | copper chaperone for superoxide dismutase | 2 | 2 | ||||||||
MIRT617510 | C5orf45 | MRN complex interacting protein | 2 | 2 | ||||||||
MIRT617548 | MTO1 | mitochondrial tRNA translation optimization 1 | 2 | 2 | ||||||||
MIRT620565 | WBSCR27 | methyltransferase like 27 | 2 | 2 | ||||||||
MIRT623166 | NAA50 | N(alpha)-acetyltransferase 50, NatE catalytic subunit | 2 | 2 | ||||||||
MIRT624161 | DGKE | diacylglycerol kinase epsilon | 2 | 2 | ||||||||
MIRT626090 | MKLN1 | muskelin 1 | 2 | 2 | ||||||||
MIRT627010 | FIG4 | FIG4 phosphoinositide 5-phosphatase | 2 | 2 | ||||||||
MIRT627073 | SF3A1 | splicing factor 3a subunit 1 | 2 | 2 | ||||||||
MIRT627136 | HS3ST1 | heparan sulfate-glucosamine 3-sulfotransferase 1 | 2 | 2 | ||||||||
MIRT627340 | TSHZ2 | teashirt zinc finger homeobox 2 | 2 | 2 | ||||||||
MIRT627436 | TAS2R5 | taste 2 receptor member 5 | 2 | 2 | ||||||||
MIRT628273 | CYB5D1 | cytochrome b5 domain containing 1 | 2 | 2 | ||||||||
MIRT629091 | F2RL1 | F2R like trypsin receptor 1 | 2 | 4 | ||||||||
MIRT629282 | UNC13A | unc-13 homolog A | 2 | 2 | ||||||||
MIRT630122 | ARHGEF5 | Rho guanine nucleotide exchange factor 5 | 2 | 2 | ||||||||
MIRT630247 | SMTNL2 | smoothelin like 2 | 2 | 2 | ||||||||
MIRT631260 | CENPM | centromere protein M | 2 | 2 | ||||||||
MIRT631336 | CD300E | CD300e molecule | 2 | 2 | ||||||||
MIRT631399 | IL2RA | interleukin 2 receptor subunit alpha | 2 | 2 | ||||||||
MIRT632593 | PDP2 | pyruvate dehyrogenase phosphatase catalytic subunit 2 | 2 | 2 | ||||||||
MIRT632991 | DUSP18 | dual specificity phosphatase 18 | 2 | 2 | ||||||||
MIRT633079 | CXorf21 | chromosome X open reading frame 21 | 2 | 2 | ||||||||
MIRT634223 | TMEM132B | transmembrane protein 132B | 2 | 2 | ||||||||
MIRT635046 | MYH11 | myosin heavy chain 11 | 2 | 2 | ||||||||
MIRT636444 | LRCH3 | leucine rich repeats and calponin homology domain containing 3 | 2 | 2 | ||||||||
MIRT636649 | CDK4 | cyclin dependent kinase 4 | 2 | 2 | ||||||||
MIRT637129 | BAMBI | BMP and activin membrane bound inhibitor | 2 | 2 | ||||||||
MIRT637282 | IBA57 | IBA57 homolog, iron-sulfur cluster assembly | 2 | 2 | ||||||||
MIRT637527 | RGS9BP | regulator of G protein signaling 9 binding protein | 2 | 2 | ||||||||
MIRT637783 | OLA1 | Obg like ATPase 1 | 2 | 2 | ||||||||
MIRT637920 | LILRA2 | leukocyte immunoglobulin like receptor A2 | 2 | 2 | ||||||||
MIRT638238 | SLC1A5 | solute carrier family 1 member 5 | 2 | 2 | ||||||||
MIRT638444 | PLXDC2 | plexin domain containing 2 | 2 | 2 | ||||||||
MIRT639765 | GPR45 | G protein-coupled receptor 45 | 2 | 2 | ||||||||
MIRT640437 | ERVMER34-1 | endogenous retrovirus group MER34 member 1, envelope | 2 | 2 | ||||||||
MIRT643006 | ZNF829 | zinc finger protein 829 | 2 | 2 | ||||||||
MIRT644233 | SLC35E3 | solute carrier family 35 member E3 | 2 | 2 | ||||||||
MIRT644661 | TMCO1 | transmembrane and coiled-coil domains 1 | 2 | 2 | ||||||||
MIRT644957 | ATP6AP1L | ATPase H+ transporting accessory protein 1 like | 2 | 2 | ||||||||
MIRT645086 | SLC35E2B | solute carrier family 35 member E2B | 2 | 2 | ||||||||
MIRT645256 | DFFA | DNA fragmentation factor subunit alpha | 2 | 2 | ||||||||
MIRT645861 | GBP6 | guanylate binding protein family member 6 | 2 | 2 | ||||||||
MIRT645987 | ACP6 | acid phosphatase 6, lysophosphatidic | 2 | 2 | ||||||||
MIRT646502 | FAM217B | family with sequence similarity 217 member B | 2 | 2 | ||||||||
MIRT646811 | COX19 | COX19, cytochrome c oxidase assembly factor | 2 | 2 | ||||||||
MIRT647706 | NFX1 | nuclear transcription factor, X-box binding 1 | 2 | 2 | ||||||||
MIRT649657 | TEP1 | telomerase associated protein 1 | 2 | 2 | ||||||||
MIRT650550 | YIPF4 | Yip1 domain family member 4 | 2 | 2 | ||||||||
MIRT650785 | GSR | glutathione-disulfide reductase | 2 | 2 | ||||||||
MIRT651461 | XIAP | X-linked inhibitor of apoptosis | 2 | 2 | ||||||||
MIRT652098 | TRUB2 | TruB pseudouridine synthase family member 2 | 2 | 2 | ||||||||
MIRT654117 | RPS6KA5 | ribosomal protein S6 kinase A5 | 2 | 2 | ||||||||
MIRT658901 | DPY19L4 | dpy-19 like 4 | 2 | 2 | ||||||||
MIRT659370 | CREG2 | cellular repressor of E1A stimulated genes 2 | 2 | 2 | ||||||||
MIRT662537 | MTAP | methylthioadenosine phosphorylase | 2 | 2 | ||||||||
MIRT662617 | MCM8 | minichromosome maintenance 8 homologous recombination repair factor | 2 | 2 | ||||||||
MIRT663491 | IYD | iodotyrosine deiodinase | 2 | 2 | ||||||||
MIRT663899 | MRI1 | methylthioribose-1-phosphate isomerase 1 | 2 | 2 | ||||||||
MIRT664552 | MKI67IP | nucleolar protein interacting with the FHA domain of MKI67 | 1 | 1 | ||||||||
MIRT664582 | HSD17B12 | hydroxysteroid 17-beta dehydrogenase 12 | 2 | 2 | ||||||||
MIRT664953 | PTCD3 | pentatricopeptide repeat domain 3 | 2 | 2 | ||||||||
MIRT665193 | ESF1 | ESF1 nucleolar pre-rRNA processing protein homolog | 2 | 2 | ||||||||
MIRT665446 | WDR17 | WD repeat domain 17 | 2 | 2 | ||||||||
MIRT665894 | TCEANC2 | transcription elongation factor A N-terminal and central domain containing 2 | 2 | 2 | ||||||||
MIRT666480 | SBNO1 | strawberry notch homolog 1 | 2 | 2 | ||||||||
MIRT666514 | RNF170 | ring finger protein 170 | 2 | 2 | ||||||||
MIRT666692 | RBM23 | RNA binding motif protein 23 | 2 | 2 | ||||||||
MIRT666791 | PSMD1 | proteasome 26S subunit, non-ATPase 1 | 2 | 2 | ||||||||
MIRT667453 | MAPK14 | mitogen-activated protein kinase 14 | 2 | 2 | ||||||||
MIRT667553 | LRAT | lecithin retinol acyltransferase | 2 | 4 | ||||||||
MIRT667744 | KDELR1 | KDEL endoplasmic reticulum protein retention receptor 1 | 2 | 2 | ||||||||
MIRT668080 | GMEB1 | glucocorticoid modulatory element binding protein 1 | 2 | 2 | ||||||||
MIRT668114 | GK5 | glycerol kinase 5 (putative) | 2 | 2 | ||||||||
MIRT668501 | ESYT2 | extended synaptotagmin 2 | 2 | 2 | ||||||||
MIRT668942 | CNKSR3 | CNKSR family member 3 | 2 | 2 | ||||||||
MIRT670408 | ELP2 | elongator acetyltransferase complex subunit 2 | 2 | 2 | ||||||||
MIRT671134 | CD226 | CD226 molecule | 2 | 2 | ||||||||
MIRT671919 | PLEKHS1 | pleckstrin homology domain containing S1 | 2 | 4 | ||||||||
MIRT672287 | GP2 | glycoprotein 2 | 2 | 2 | ||||||||
MIRT672427 | POLR2D | RNA polymerase II subunit D | 2 | 2 | ||||||||
MIRT672762 | UBE2V2 | ubiquitin conjugating enzyme E2 V2 | 2 | 2 | ||||||||
MIRT672923 | LRRC2 | leucine rich repeat containing 2 | 2 | 2 | ||||||||
MIRT673150 | C1orf50 | chromosome 1 open reading frame 50 | 2 | 2 | ||||||||
MIRT673309 | UBE2G2 | ubiquitin conjugating enzyme E2 G2 | 2 | 2 | ||||||||
MIRT673560 | PLA2G16 | phospholipase A2 group XVI | 2 | 2 | ||||||||
MIRT673895 | DCTN6 | dynactin subunit 6 | 2 | 2 | ||||||||
MIRT674513 | PRR23A | proline rich 23A | 2 | 2 | ||||||||
MIRT674614 | RBBP4 | RB binding protein 4, chromatin remodeling factor | 2 | 2 | ||||||||
MIRT674747 | SLC16A1 | solute carrier family 16 member 1 | 2 | 2 | ||||||||
MIRT675693 | PIWIL1 | piwi like RNA-mediated gene silencing 1 | 2 | 2 | ||||||||
MIRT675890 | SNAP29 | synaptosome associated protein 29 | 2 | 2 | ||||||||
MIRT685271 | KIAA1143 | KIAA1143 | 2 | 2 | ||||||||
MIRT686057 | KCNA7 | potassium voltage-gated channel subfamily A member 7 | 2 | 2 | ||||||||
MIRT693886 | C3orf62 | chromosome 3 open reading frame 62 | 2 | 2 | ||||||||
MIRT695594 | TMEM199 | transmembrane protein 199 | 2 | 2 | ||||||||
MIRT696592 | ORMDL2 | ORMDL sphingolipid biosynthesis regulator 2 | 2 | 2 | ||||||||
MIRT698041 | TRPM7 | transient receptor potential cation channel subfamily M member 7 | 2 | 2 | ||||||||
MIRT699907 | RUNDC1 | RUN domain containing 1 | 2 | 2 | ||||||||
MIRT706608 | CYB5B | cytochrome b5 type B | 2 | 2 | ||||||||
MIRT706628 | PNPT1 | polyribonucleotide nucleotidyltransferase 1 | 2 | 2 | ||||||||
MIRT706640 | NCBP2 | nuclear cap binding protein subunit 2 | 2 | 2 | ||||||||
MIRT706676 | COL13A1 | collagen type XIII alpha 1 chain | 2 | 2 | ||||||||
MIRT706723 | RFK | riboflavin kinase | 2 | 2 | ||||||||
MIRT706857 | MAFF | MAF bZIP transcription factor F | 2 | 2 | ||||||||
MIRT706891 | ST3GAL1 | ST3 beta-galactoside alpha-2,3-sialyltransferase 1 | 2 | 2 | ||||||||
MIRT706958 | FANCC | Fanconi anemia complementation group C | 2 | 2 | ||||||||
MIRT706976 | XPO5 | exportin 5 | 2 | 2 | ||||||||
MIRT707010 | RRP36 | ribosomal RNA processing 36 | 2 | 2 | ||||||||
MIRT707028 | ACTR5 | ARP5 actin related protein 5 homolog | 2 | 2 | ||||||||
MIRT707068 | MED29 | mediator complex subunit 29 | 2 | 2 | ||||||||
MIRT713253 | ZFP30 | ZFP30 zinc finger protein | 2 | 2 | ||||||||
MIRT719130 | NR2F6 | nuclear receptor subfamily 2 group F member 6 | 2 | 2 |
miRNA-Drug Resistance Associations | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|