pre-miRNA Information | |
---|---|
pre-miRNA | hsa-mir-4651 |
Genomic Coordinates | chr7: 75915197 - 75915269 |
Description | Homo sapiens miR-4651 stem-loop |
Comment | None |
RNA Secondary Structure |
Mature miRNA Information | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mature miRNA | hsa-miR-4651 | ||||||||||||||||||||||||||||||
Sequence | 10| CGGGGUGGGUGAGGUCGGGC |29 | ||||||||||||||||||||||||||||||
Evidence | Experimental | ||||||||||||||||||||||||||||||
Experiments | Illumina | DRVs in miRNA |
|
||||||||||||||||||||||||||||
SNPs in miRNA |
|
||||||||||||||||||||||||||||||
Putative Targets |
miRNA Expression profile | |
---|---|
Human miRNA Tissue Atlas | |
miRNAs in Extracellular Vesicles |
|
Circulating MicroRNA Expression Profiling |
Gene Information | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gene Symbol | ZC3H12B | ||||||||||||||||||||
Synonyms | CXorf32, MCPIP2 | ||||||||||||||||||||
Description | zinc finger CCCH-type containing 12B | ||||||||||||||||||||
Transcript | NM_001010888 | ||||||||||||||||||||
Expression | |||||||||||||||||||||
Putative miRNA Targets on ZC3H12B | |||||||||||||||||||||
3'UTR of ZC3H12B (miRNA target sites are highlighted) |
>ZC3H12B|NM_001010888|3'UTR 1 TATGACATAGTACTTATTTCTTTATACAAATATGAATATTAATACTAATAATACACTAATACAATAATTATAGTAACTAA 81 TAATTTGTGTTGCGCTTTACAAGTTAGAGTGTTTATATCATTTAAGCGCTTAACAACCCTGTGAGGTACGTCTTACTAAC 161 ATCCTCTTTTATAGAGAAGGAAGGTGAAGGTCAGTGAAATTAAGTGGCTAGCCAGGGTCACACTGCTAGCAAATGACTAA 241 GTCAAGACACACACCCAAGTCCTCTAAATCCAAGTCCCATGCCCCTTTGCACTGCACCATGCAGGTAATGGAGGACAAAA 321 CCCAGGGGGAGAGGTCTAGATGTAAGAAATCCCAGAGGATTCCATTACCAGAGTTTTCCTTTTTCTCTTTTCGTTTCTTT 401 CTTTCTTTCTTTATTTTTTTTTTTTGAGACAGAATCTCACTCTGTTACACAGGCTGGAGTGCAGTGGCACTATCTCTGCT 481 CACTGCAACCTCCACCTCCAGGGTTCAAGTGATTCTATGGCCTCAGCCTCCCAGGTAGCTGGGATTACAGGCGTGCACCA 561 CCATGCCCAGCTAATTTTTGTATTTTTAGTAGAGACGTGGTTTCACCGTGTTGGCCAGGCTGGTCTCAAACTCCTGGCCT 641 CAAGTGATCCGCCCACCTTGGCCTCCTAAAGTGCTGGGATTACAGGTGTGAGCCACTGCGCCCAGCCTACCAGAGTTTTC 721 GTAGTCACATATTCTATATTACAAAGTATGGATGATATATCCAATTTAGAGAGCAAAAGCATCAGGATCAGATCATATGT 801 TGAATTAACCTTTTAGGTTTTTTCTAATAGAAATATTTAAAGCTATTTAAAAGTAAATGCATACTTTATTGCATGGATAT 881 CTGATCACTCAATCTATATTAATGAAACTATAGGGTCACATTGAAGCTTCTAGAACTATATTTTAAAGCTATTATTAGCA 961 ATTATATTGCATGTATGAATATATATATTTGGTTTGAGATGTGTGTGTATCTCTGTATAACCTTTTATATAGTGATAATG 1041 AGAGGGTAGGCTCTACACAGTCCTTCGTCTATAGCTGTATAGGTCACTAATCTGACTTGATGATTTTAAGTCACATTTCA 1121 TAGTTTTAACTAGTTATGAGAGAGAAATTATATGGCAATATTTGAACATTGCTTTCTTAGGCACCAGAGCAAAGCAACTC 1201 TGTTTCCTTTGCACATTTTACCTGCCAACATTTATTAACAGTTCTTACCTTCCAAGTCTCTTCACCTTAGCAAATTAGGG 1281 ATCAGGTTGCAGTCTTCTGCAGAGAAACTGATGGTTAAGCTCAAGTTCCAAGCATAGTATGTGTGTGCTACACAAGCTCA 1361 GAAGAGTTTGACAAGGACCAGGGGACTTACTACCACAATCCACTTCCCTTATCCCAGGAGAGATGGCCAAACCCATGTGG 1441 CATTAAATGGTGAATAAAAAAGCTTCACTCAAGGAGGGACTATTGGATGCTCTTTGGACTTCTGACCTATGCAGTATTCA 1521 ACATCATTGGATGAAATGTAATGGAGGACAGTGCACAGCCATGTATCCACTTTCTCTTCCTGTCCACCCTTTGGGTAATA 1601 AGGTCAATCATTGGTGGAACAGAATTTCTCTAGGAAACAAAACCAGGGGATTTTATTTGTGGAAAAAGGAAGTTTCCAAA 1681 AGGGGATACTGCATCTTTACTAATAGCTGGCTCAGTTACTCACTTTAAATCCATGCAAAGAGTGCACTTGCTGTTAAATA 1761 ATTGTTAAATGAGTTATTAGAAGGCAGGACTTTTGGTTTGGGCGACACCATTTGCGCAACTTGTATCTTGCTCAGGGTGG 1841 AAAACTTCATAGCTAAATGCCTCTAGAAGAGGTGTTTATTGTTTTTTTTAAGCTGCACTAAATGAATTCCCTTTTTGAAT 1921 CCATTGTATATTTCAATATTTCGAACCATGATCAGCTCACTATTTCCTGAGCTGGAACTTGCTAACTTCTATGATCGTTT 2001 TTTCATGAAAGTTGAGAAGGCCGGGCCTTGGCCTTTTGTTTCTTCATGAGAAGGTGTGACACTGCCTATAAATGTTTCTT 2081 ACTGTGAAACACTCTGAATGTGAGGCTGTAGTCAGGGTTGTTTCTGGTGGTTTGACAATGGCTTGCATGCTGCTTTCTGG 2161 CTTTCTGTCTCTGTCCAAGTTGATCAATACTGCATCTTAACCAATGTTTCACTTGAGTTAACCACAGCTTTACATTCTAT 2241 CTCCTATCTTCTGATCTTCGTATACCCCAGCATATTGAAAAAGAGTAAAAGTATTTTCTATCAATCAGGTAGATCCACAG 2321 AGTGACAGTTGCCACTGCAGTGCTTGCTATTTCACACAAACACCATTTCATACCTTCAACTTCTTGGACTTTCTAAATCG 2401 GACTCGTGTCTAAATCAGGGTATTTGACAATCTCAGATGATGCTACTGCCTATGTGCCAGTTAGTTCATCTTCCTACCAA 2481 GATCATGAATGGCACCACACTATCCACTAGCTGTACAATTTACAGAGAAGCACAAGATTCATCTTGTCACCTACAATTCG 2561 TCTTGAACATGTTCATATTTAGTACTCAGAAACTGTGTAAGCTCCTCCCAATACAGAAAATATTTTTTAAGGCAGCATAT 2641 GTATTTCTGATTTACTAAAAACGATTGTCATTCTCCTCTCATTCTTCTTTTTGGTATGAACCAAAAGCGGCTAGGAGCAA 2721 TGCCTCAAATAACCAGAAATGACCTTTTGTTGATACAAATTGTATCTCTTTTTTTCCTGATTGTATAGAAACAAATGTAC 2801 AAAACTCATCTGAAGCTAGGTTTGGCACTGAATTTTCACCATGAGGTTTGTGGCACTGTGTGTCACAGGGAAGTAGCTCA 2881 GGGGTTGTGAGGGAGCTTTTATTTCTAAAGGGCAGTAGTAATTTATAGACAAAAACAATTTTTCAAGGCCTCTTTATTAC 2961 CACTGCACAGCTATCATGTGTAAAATTTCAAGCATTATATTGCATAAGTTCTCTTTAGCCTATTAAATTTAATATGTCCT 3041 TGCAAAAGGGATTTTGTGTAAAAAGTGTCAGTGTTAGTGACTCATCTGCAAGAATCTACAAATGGAGCTATACAACTATG 3121 AATACATAAATACAGCATGGTTCCTAGTTATTAGAGAAACATTTTCTTTATATTGAGGTCTACGCACTTCTTGACTTTCC 3201 ATTTTGTCTGTAATTATAAAACAGCAAATAACAAAGAAGCATTGGGACCCCCTCGGCTGCCTTGATAATAAAATCAAGCT 3281 TCCTTCATGGGACTAAGCATGTGTCCTTCAGGATACTTACCTCTAAGCACTCAGCAGGGGTTACTACAAAGCGTTTTGTG 3361 TGGTTTTCAAAAAACAGTGTATTTTGCAAGAGGTGCTTTGTAATTTTAATTATTTCACTGATTTTCTGACCTCATAGGAA 3441 GTCTGTGCCTGTTGAGGCCTTCAATTTTGTAGCTTTTCTGATTTTTTTTCTTCTTTTTGTGATTTTGTTGTTGTTTTCAT 3521 TTTGATCTAAAGGAGAAGTGTGACCCCGGAGTGGCATGGTCAATCCAGGGCACCCTTTCTGTAAGACAACTCAAAGGAAA 3601 AGAAGCCTTTTCAAAGGTAATATCGAGCCATTGCACTCTCTCTTAAGGTGCCAGGTATGGGAGAATGACAGATGCCTTAT 3681 GGAAATGGTCTACAAAACTTTTCTTCTTCTAAGTAATAAAACACATAGCATGATTCTCTCTCCCTCTCTCTCTCTCTCTC 3761 TGCCCACCCCCTGCTAGTTTCCAGGAGAATACTTCTCTAAAATTCATTTTTTTCTATTTTGGAATAAATTATCTTTATAC 3841 AGTAATTCAAACACTGATTTCCATTAACCTTTGGCCCTGAGTTTTCTTCTAACATAGAAGAGTTCATTTTGAGAGGCACT 3921 CAGTTACCATTCAATCTGTGCTGTAAGTATGGGACTTTGTACAAATGCCCTTTTTGAGGGCCAAAAATTTCAATACACTT 4001 TGTTCTACTTTGTGAACCAGGTCTGGATCTGCACAGAGAAAGTAATGCTGAGCTGTCCAAAGAGTCCGCTCAGGTCTCCC 4081 TCCTAACCCTCCTCTGCCTTCCCCTAGTTTGCTTATCCTCACGTCTGACACTGAGGAGTGCATAGTCTTCAACTGAAATG 4161 GCACTACAGTTAGTTCTCATTGGAAACAAACAAGTGTATTTCTGGAACCTGCTCGTCTAAAATAGTCAATGCCTTTGTAA 4241 AGACTCAGCATATTCAATATCTATTGTATGGTAGCTAGCTATATACATAGATTGACTATTTTTAGTCCTGGTTTGTGTAT 4321 TGTTGAGCTATAGTAGTTTGCTTTATCCATTTGTGGGATTAAACAATACTGTTTAATGGTTGTAAACTTTTATAAAATCT 4401 CTTTGGGTTTTTTGTTTGACCCAAACATAATGTAAGTCTTAATGACAAAATACACAAAGTTAACCAGAGGTGAGTGAAAA 4481 TATAGCCCTTCCCCAGTTTTGTCTGCCCCTATAATGCACGTGCATTGCTTTGTAATATGCTCTCGCTAGCATGAATGTGC 4561 TATGACTACTTCATGAGGTTTTGTTTCACCTATAATTGTGATGGAAAATGCTGTATTGCTGACAACAATGAACTGTAACC 4641 ACAGTTATTTACTGCATAAACTATTTGTGTACTAACCAAAAAAAAAAAAAAAAAA Target sites
Provided by authors
Predicted by miRanda
DRVs
SNPs
DRVs & SNPs
|
||||||||||||||||||||
miRNA-target interactions (Predicted by miRanda) |
|
||||||||||||||||||||
SNPs in gene 3'UTRs |
Experimental Support 1 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | TZM-bl |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in GSM1462573. RNA binding protein: AGO2. Condition:TZM-bl BaL
PAR-CLIP data was present in GSM1462574. RNA binding protein: AGO2. Condition:TZM-bl ami BaL
... - Whisnant AW; Bogerd HP; Flores O; Ho P; et al., 2013, mBio. |
Article |
- Whisnant AW; Bogerd HP; Flores O; Ho P; et al. - mBio, 2013
UNLABELLED: The question of how HIV-1 interfaces with cellular microRNA (miRNA) biogenesis and effector mechanisms has been highly controversial. Here, we first used deep sequencing of small RNAs present in two different infected cell lines (TZM-bl and C8166) and two types of primary human cells (CD4(+) peripheral blood mononuclear cells [PBMCs] and macrophages) to unequivocally demonstrate that HIV-1 does not encode any viral miRNAs. Perhaps surprisingly, we also observed that infection of T cells by HIV-1 has only a modest effect on the expression of cellular miRNAs at early times after infection. Comprehensive analysis of miRNA binding to the HIV-1 genome using the photoactivatable ribonucleoside-induced cross-linking and immunoprecipitation (PAR-CLIP) technique revealed several binding sites for cellular miRNAs, a subset of which were shown to be capable of mediating miRNA-mediated repression of gene expression. However, the main finding from this analysis is that HIV-1 transcripts are largely refractory to miRNA binding, most probably due to extensive viral RNA secondary structure. Together, these data demonstrate that HIV-1 neither encodes viral miRNAs nor strongly influences cellular miRNA expression, at least early after infection, and imply that HIV-1 transcripts have evolved to avoid inhibition by preexisting cellular miRNAs by adopting extensive RNA secondary structures that occlude most potential miRNA binding sites. IMPORTANCE: MicroRNAs (miRNAs) are a ubiquitous class of small regulatory RNAs that serve as posttranscriptional regulators of gene expression. Previous work has suggested that HIV-1 might subvert the function of the cellular miRNA machinery by expressing viral miRNAs or by dramatically altering the level of cellular miRNA expression. Using very sensitive approaches, we now demonstrate that neither of these ideas is in fact correct. Moreover, HIV-1 transcripts appear to largely avoid regulation by cellular miRNAs by adopting an extensive RNA secondary structure that occludes the ability of cellular miRNAs to interact with viral mRNAs. Together, these data suggest that HIV-1, rather than seeking to control miRNA function in infected cells, has instead evolved a mechanism to become largely invisible to cellular miRNA effector mechanisms.
LinkOut: [PMID: 23592263]
|
Experimental Support 2 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | MCF7 |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in SRR1045082. RNA binding protein: AGO2. Condition:Untreated
... - Farazi TA; Ten Hoeve JJ; Brown M; et al., 2014, Genome biology. |
Article |
- Farazi TA; Ten Hoeve JJ; Brown M; et al. - Genome biology, 2014
BACKGROUND: Various microRNAs (miRNAs) are up- or downregulated in tumors. However, the repression of cognate miRNA targets responsible for the phenotypic effects of this dysregulation in patients remains largely unexplored. To define miRNA targets and associated pathways, together with their relationship to outcome in breast cancer, we integrated patient-paired miRNA-mRNA expression data with a set of validated miRNA targets and pathway inference. RESULTS: To generate a biochemically-validated set of miRNA-binding sites, we performed argonaute-2 photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (AGO2-PAR-CLIP) in MCF7 cells. We then defined putative miRNA-target interactions using a computational model, which ranked and selected additional TargetScan-predicted interactions based on features of our AGO2-PAR-CLIP binding-site data. We subselected modeled interactions according to the abundance of their constituent miRNA and mRNA transcripts in tumors, and we took advantage of the variability of miRNA expression within molecular subtypes to detect miRNA repression. Interestingly, our data suggest that miRNA families control subtype-specific pathways; for example, miR-17, miR-19a, miR-25, and miR-200b show high miRNA regulatory activity in the triple-negative, basal-like subtype, whereas miR-22 and miR-24 do so in the HER2 subtype. An independent dataset validated our findings for miR-17 and miR-25, and showed a correlation between the expression levels of miR-182 targets and overall patient survival. Pathway analysis associated miR-17, miR-19a, and miR-200b with leukocyte transendothelial migration. CONCLUSIONS: We combined PAR-CLIP data with patient expression data to predict regulatory miRNAs, revealing potential therapeutic targets and prognostic markers in breast cancer.
LinkOut: [PMID: 24398324]
|
Experimental Support 3 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | Prostate Tissue |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in SRX1760618. RNA binding protein: AGO2. Condition:AGO-CLIP-PC3_B
PAR-CLIP data was present in SRX1760616. RNA binding protein: AGO2. Condition:AGO-CLIP-PC3_A
PAR-CLIP data was present in SRX1760631. RNA binding protein: AGO2. Condition:AGO-CLIP-22RV1_B
... - Hamilton MP; Rajapakshe KI; Bader DA; Cerne et al., 2016, Neoplasia (New York, N.Y.). |
Article |
- Hamilton MP; Rajapakshe KI; Bader DA; Cerne et al. - Neoplasia (New York, N.Y.), 2016
MicroRNA (miRNA) deregulation in prostate cancer (PCa) contributes to PCa initiation and metastatic progression. To comprehensively define the cancer-associated changes in miRNA targeting and function in commonly studied models of PCa, we performed photoactivatable ribonucleoside-enhanced cross-linking immunoprecipitation of the Argonaute protein in a panel of PCa cell lines modeling different stages of PCa progression. Using this comprehensive catalogue of miRNA targets, we analyzed miRNA targeting on known drivers of PCa and examined tissue-specific and stage-specific pathway targeting by miRNAs. We found that androgen receptor is the most frequently targeted PCa oncogene and that miR-148a targets the largest number of known PCa drivers. Globally, tissue-specific and stage-specific changes in miRNA targeting are driven by homeostatic response to active oncogenic pathways. Our findings indicate that, even in advanced PCa, the miRNA pool adapts to regulate continuing alterations in the cancer genome to balance oncogenic molecular changes. These findings are important because they are the first to globally characterize miRNA changes in PCa and demonstrate how the miRNA target spectrum responds to staged tumorigenesis.
LinkOut: [PMID: 27292025]
|
CLIP-seq Support 1 for dataset SRR1045082 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | MCF7 / Untreated |
Location of target site | ENST00000338957.4 | 3UTR | CCCUCUCUCUCUCUCUCUCUGCCC |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 24398324 / SRX388831 |
CLIP-seq Viewer | Link |
CLIP-seq Support 2 for dataset GSM1462573 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | TZM-bl / TZM-bl BaL |
Location of target site | ENST00000338957.4 | 3UTR | CUCUCUCCCUCUCUCUCUCUCUCUCUGCCC |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 23592263 / GSE59944 |
CLIP-seq Viewer | Link |
CLIP-seq Support 3 for dataset GSM1462574 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | TZM-bl / TZM-bl ami BaL |
Location of target site | ENST00000338957.4 | 3UTR | CCCUCUCUCUCUCUCUCUCUGCCC |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 23592263 / GSE59944 |
CLIP-seq Viewer | Link |
MiRNA-Target Expression Profile | |||||||
---|---|---|---|---|---|---|---|
|
MiRNA-Target Expression Profile (TCGA) | |||||||
---|---|---|---|---|---|---|---|
|
121 hsa-miR-4651 Target Genes:
Functional analysis:
ID | Target | Description | Validation methods | |||||||||
Strong evidence | Less strong evidence | |||||||||||
MIRT066212 | MARCH9 | membrane associated ring-CH-type finger 9 | 2 | 2 | ||||||||
MIRT113270 | TMBIM6 | transmembrane BAX inhibitor motif containing 6 | 2 | 2 | ||||||||
MIRT115795 | CAPN15 | calpain 15 | 2 | 2 | ||||||||
MIRT125296 | MID1IP1 | MID1 interacting protein 1 | 2 | 2 | ||||||||
MIRT145419 | ANKRD13B | ankyrin repeat domain 13B | 2 | 2 | ||||||||
MIRT153779 | NCOA3 | nuclear receptor coactivator 3 | 2 | 2 | ||||||||
MIRT189384 | TXLNA | taxilin alpha | 2 | 4 | ||||||||
MIRT451063 | PNMAL2 | paraneoplastic Ma antigen family member 8B | 2 | 2 | ||||||||
MIRT451142 | C19orf53 | chromosome 19 open reading frame 53 | 2 | 2 | ||||||||
MIRT452374 | LY6E | lymphocyte antigen 6 family member E | 2 | 4 | ||||||||
MIRT452788 | FAM136A | family with sequence similarity 136 member A | 2 | 2 | ||||||||
MIRT452985 | CABP4 | calcium binding protein 4 | 2 | 2 | ||||||||
MIRT453231 | FTSJ3 | FtsJ RNA methyltransferase homolog 3 | 2 | 2 | ||||||||
MIRT453824 | SAA1 | serum amyloid A1 | 2 | 2 | ||||||||
MIRT454136 | FOXRED2 | FAD dependent oxidoreductase domain containing 2 | 2 | 2 | ||||||||
MIRT455104 | NKX2-2 | NK2 homeobox 2 | 2 | 6 | ||||||||
MIRT455250 | DDX39B | DExD-box helicase 39B | 2 | 10 | ||||||||
MIRT456899 | DDA1 | DET1 and DDB1 associated 1 | 2 | 2 | ||||||||
MIRT457099 | DCX | doublecortin | 2 | 2 | ||||||||
MIRT457761 | ZC3H12B | zinc finger CCCH-type containing 12B | 2 | 4 | ||||||||
MIRT458539 | CYP2B6 | cytochrome P450 family 2 subfamily B member 6 | 2 | 2 | ||||||||
MIRT459011 | UQCRH | ubiquinol-cytochrome c reductase hinge protein | 2 | 2 | ||||||||
MIRT459197 | RCE1 | Ras converting CAAX endopeptidase 1 | 2 | 2 | ||||||||
MIRT459295 | PHYKPL | 5-phosphohydroxy-L-lysine phospho-lyase | 2 | 2 | ||||||||
MIRT459466 | MUC17 | mucin 17, cell surface associated | 2 | 4 | ||||||||
MIRT459598 | KCNK3 | potassium two pore domain channel subfamily K member 3 | 2 | 2 | ||||||||
MIRT461274 | COX10 | COX10, heme A:farnesyltransferase cytochrome c oxidase assembly factor | 2 | 2 | ||||||||
MIRT464551 | UBTF | upstream binding transcription factor, RNA polymerase I | 2 | 2 | ||||||||
MIRT465253 | TRIM44 | tripartite motif containing 44 | 2 | 2 | ||||||||
MIRT465274 | TRIM28 | tripartite motif containing 28 | 2 | 2 | ||||||||
MIRT465402 | TP53 | tumor protein p53 | 2 | 2 | ||||||||
MIRT465877 | TMEM43 | transmembrane protein 43 | 2 | 4 | ||||||||
MIRT466234 | TMED10 | transmembrane p24 trafficking protein 10 | 2 | 2 | ||||||||
MIRT467027 | SRSF1 | serine and arginine rich splicing factor 1 | 2 | 4 | ||||||||
MIRT468320 | SF3B3 | splicing factor 3b subunit 3 | 2 | 2 | ||||||||
MIRT468437 | SETD1B | SET domain containing 1B | 2 | 2 | ||||||||
MIRT468691 | SEC22C | SEC22 homolog C, vesicle trafficking protein | 2 | 4 | ||||||||
MIRT468863 | RREB1 | ras responsive element binding protein 1 | 2 | 2 | ||||||||
MIRT469779 | RAB15 | RAB15, member RAS oncogene family | 2 | 2 | ||||||||
MIRT470314 | PPP6R1 | protein phosphatase 6 regulatory subunit 1 | 2 | 2 | ||||||||
MIRT470765 | PNPLA6 | patatin like phospholipase domain containing 6 | 2 | 2 | ||||||||
MIRT472213 | NGFR | nerve growth factor receptor | 2 | 2 | ||||||||
MIRT472520 | NACC1 | nucleus accumbens associated 1 | 2 | 2 | ||||||||
MIRT473281 | MFRP | membrane frizzled-related protein | 2 | 2 | ||||||||
MIRT473403 | MDM4 | MDM4, p53 regulator | 2 | 2 | ||||||||
MIRT473521 | MAX | MYC associated factor X | 2 | 2 | ||||||||
MIRT474529 | KLHDC8A | kelch domain containing 8A | 2 | 2 | ||||||||
MIRT474631 | KLF16 | Kruppel like factor 16 | 2 | 2 | ||||||||
MIRT475130 | IP6K1 | inositol hexakisphosphate kinase 1 | 2 | 2 | ||||||||
MIRT475808 | HDGF | heparin binding growth factor | 2 | 2 | ||||||||
MIRT478623 | CTDNEP1 | CTD nuclear envelope phosphatase 1 | 2 | 2 | ||||||||
MIRT479501 | CDH6 | cadherin 6 | 2 | 2 | ||||||||
MIRT479865 | CCDC6 | coiled-coil domain containing 6 | 2 | 2 | ||||||||
MIRT480132 | CALR | calreticulin | 2 | 2 | ||||||||
MIRT480529 | C10orf76 | chromosome 10 open reading frame 76 | 2 | 2 | ||||||||
MIRT480774 | BMP2 | bone morphogenetic protein 2 | 2 | 2 | ||||||||
MIRT481423 | ASB6 | ankyrin repeat and SOCS box containing 6 | 2 | 2 | ||||||||
MIRT481778 | APEX1 | apurinic/apyrimidinic endodeoxyribonuclease 1 | 2 | 2 | ||||||||
MIRT481821 | AP2M1 | adaptor related protein complex 2 mu 1 subunit | 2 | 2 | ||||||||
MIRT482698 | XRCC3 | X-ray repair cross complementing 3 | 2 | 2 | ||||||||
MIRT482976 | CSTF2 | cleavage stimulation factor subunit 2 | 2 | 2 | ||||||||
MIRT483391 | SPATA6 | spermatogenesis associated 6 | 2 | 4 | ||||||||
MIRT483429 | RHOXF2B | Rhox homeobox family member 2B | 2 | 2 | ||||||||
MIRT483476 | STMN3 | stathmin 3 | 2 | 4 | ||||||||
MIRT483687 | CYP11A1 | cytochrome P450 family 11 subfamily A member 1 | 2 | 2 | ||||||||
MIRT483803 | CYP2W1 | cytochrome P450 family 2 subfamily W member 1 | 2 | 6 | ||||||||
MIRT484335 | EPN1 | epsin 1 | 2 | 4 | ||||||||
MIRT484683 | PACSIN1 | protein kinase C and casein kinase substrate in neurons 1 | 2 | 2 | ||||||||
MIRT484966 | UCK1 | uridine-cytidine kinase 1 | 2 | 2 | ||||||||
MIRT485987 | YIPF2 | Yip1 domain family member 2 | 2 | 2 | ||||||||
MIRT486773 | SESTD1 | SEC14 and spectrin domain containing 1 | 2 | 4 | ||||||||
MIRT487372 | C10orf54 | V-set immunoregulatory receptor | 2 | 2 | ||||||||
MIRT487632 | ONECUT3 | one cut homeobox 3 | 2 | 4 | ||||||||
MIRT488080 | DLGAP3 | DLG associated protein 3 | 2 | 4 | ||||||||
MIRT488158 | PRRC2B | proline rich coiled-coil 2B | 2 | 4 | ||||||||
MIRT488463 | B3GALNT2 | beta-1,3-N-acetylgalactosaminyltransferase 2 | 2 | 2 | ||||||||
MIRT490948 | PPM1F | protein phosphatase, Mg2+/Mn2+ dependent 1F | 2 | 2 | ||||||||
MIRT491719 | RTN4R | reticulon 4 receptor | 2 | 2 | ||||||||
MIRT492338 | SEPT8 | septin 8 | 2 | 2 | ||||||||
MIRT493038 | NAA50 | N(alpha)-acetyltransferase 50, NatE catalytic subunit | 2 | 2 | ||||||||
MIRT493368 | KIAA1614 | KIAA1614 | 2 | 2 | ||||||||
MIRT499384 | PLCG2 | phospholipase C gamma 2 | 2 | 11 | ||||||||
MIRT499596 | ANKRD45 | ankyrin repeat domain 45 | 2 | 2 | ||||||||
MIRT499730 | USH1G | USH1 protein network component sans | 2 | 4 | ||||||||
MIRT500357 | ZNF385A | zinc finger protein 385A | 2 | 2 | ||||||||
MIRT501691 | PCGF3 | polycomb group ring finger 3 | 2 | 6 | ||||||||
MIRT504502 | PPP1R9B | protein phosphatase 1 regulatory subunit 9B | 2 | 2 | ||||||||
MIRT509579 | HIST2H2AB | histone cluster 2 H2A family member b | 2 | 4 | ||||||||
MIRT510610 | TPM3 | tropomyosin 3 | 2 | 2 | ||||||||
MIRT512803 | GLRX | glutaredoxin | 2 | 2 | ||||||||
MIRT513302 | SETBP1 | SET binding protein 1 | 2 | 2 | ||||||||
MIRT514005 | CECR2 | CECR2, histone acetyl-lysine reader | 2 | 4 | ||||||||
MIRT515701 | ZNF321P | zinc finger protein 321, pseudogene | 2 | 2 | ||||||||
MIRT518260 | LEAP2 | liver enriched antimicrobial peptide 2 | 2 | 2 | ||||||||
MIRT523183 | HIST3H3 | histone cluster 3 H3 | 2 | 2 | ||||||||
MIRT524051 | DNAJC8 | DnaJ heat shock protein family (Hsp40) member C8 | 2 | 2 | ||||||||
MIRT538642 | CCSAP | centriole, cilia and spindle associated protein | 2 | 2 | ||||||||
MIRT541497 | ADM | adrenomedullin | 2 | 2 | ||||||||
MIRT569279 | PTPRF | protein tyrosine phosphatase, receptor type F | 2 | 2 | ||||||||
MIRT570279 | ARPC3 | actin related protein 2/3 complex subunit 3 | 2 | 2 | ||||||||
MIRT570326 | ZBTB7A | zinc finger and BTB domain containing 7A | 2 | 2 | ||||||||
MIRT571451 | YKT6 | YKT6 v-SNARE homolog | 2 | 2 | ||||||||
MIRT571597 | TOB2 | transducer of ERBB2, 2 | 2 | 2 | ||||||||
MIRT574894 | Plcg2 | phospholipase C, gamma 2 | 2 | 7 | ||||||||
MIRT607551 | GLI2 | GLI family zinc finger 2 | 2 | 2 | ||||||||
MIRT607694 | MAPK10 | mitogen-activated protein kinase 10 | 2 | 2 | ||||||||
MIRT609983 | PPARA | peroxisome proliferator activated receptor alpha | 2 | 2 | ||||||||
MIRT610076 | CRLF1 | cytokine receptor like factor 1 | 2 | 2 | ||||||||
MIRT610578 | CACUL1 | CDK2 associated cullin domain 1 | 2 | 4 | ||||||||
MIRT626322 | LRTOMT | leucine rich transmembrane and O-methyltransferase domain containing | 2 | 2 | ||||||||
MIRT634011 | RIF1 | replication timing regulatory factor 1 | 2 | 2 | ||||||||
MIRT642680 | KRT74 | keratin 74 | 2 | 2 | ||||||||
MIRT689717 | ATXN2 | ataxin 2 | 2 | 2 | ||||||||
MIRT691175 | APOL6 | apolipoprotein L6 | 2 | 2 | ||||||||
MIRT693169 | NPR1 | natriuretic peptide receptor 1 | 2 | 2 | ||||||||
MIRT697121 | OTUD5 | OTU deubiquitinase 5 | 2 | 2 | ||||||||
MIRT711817 | ELN | elastin | 2 | 2 | ||||||||
MIRT721551 | FXN | frataxin | 2 | 2 | ||||||||
MIRT721666 | SLFN12 | schlafen family member 12 | 2 | 2 | ||||||||
MIRT723760 | NKIRAS2 | NFKB inhibitor interacting Ras like 2 | 2 | 2 | ||||||||
MIRT737362 | FOXP4 | forkhead box P4 | 2 | 0 |
miRNA-Drug Associations | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
miRNA-Drug Resistance Associations | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|