pre-miRNA Information | |
---|---|
pre-miRNA | hsa-mir-3937 |
Genomic Coordinates | chrX: 39661216 - 39661321 |
Description | Homo sapiens miR-3937 stem-loop |
Comment | None |
RNA Secondary Structure |
Mature miRNA Information | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mature miRNA | hsa-miR-3937 | |||||||||||||||||||||
Sequence | 61| ACAGGCGGCUGUAGCAAUGGGGG |83 | |||||||||||||||||||||
Evidence | Experimental | |||||||||||||||||||||
Experiments | Illumina | |||||||||||||||||||||
SNPs in miRNA |
|
|||||||||||||||||||||
Putative Targets |
miRNA Expression profile | |
---|---|
Human miRNA Tissue Atlas | |
Circulating MicroRNA Expression Profiling |
Gene Information | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gene Symbol | ZNF385A | ||||||||||||||||||||
Synonyms | HZF, RZF, ZFP385, ZNF385 | ||||||||||||||||||||
Description | zinc finger protein 385A | ||||||||||||||||||||
Transcript | NM_001130967 | ||||||||||||||||||||
Other Transcripts | NM_001130968 , NM_015481 | ||||||||||||||||||||
Expression | |||||||||||||||||||||
Putative miRNA Targets on ZNF385A | |||||||||||||||||||||
3'UTR of ZNF385A (miRNA target sites are highlighted) |
>ZNF385A|NM_001130967|3'UTR 1 CCTCAACCCTGAACCCCTCCCATTCAACTCCCCACCTCCAGCCGGGACCCAGGCGTCCGGGCTCCCAGCCCGCCCCTCCT 81 CCCGGCACTCCCTAAATGATCTCTCCTTCCCCCCCCCCACCCCGAGATACGGGGTTCCAGGAAAGGGGAGGGGTAGCGGG 161 GGAGGGGGGCTTCAGAAGGGGGGGAACACCCCAGATCTCAGGGAACCCCGCCCCCTGCCTTTCCCTCTCCCCTAGAAAAG 241 GGGGGGCCGTCTCACCCCCGAGCCCCCTTGGAGACACCCCCCCTCCCAAAAGCCATGTCCATCCAGCCCTTCCCCCCAAA 321 CCTAGCACAAAACGGGGTTCACAAGCCATGGTCGGGGTCCGGGGGGGACAGAAATGGATTTTCTTGGCAATAAGCGGACT 401 CTGGGACTCCGGCTCCCTACCCCAAACTGAAGCGCTTCCGTGAACACCCCCGTCCTCCGTAGGGGGAGGGGAGCAGGCGG 481 GATCCTGGGTCCCTCATAAGCACTTTGGTTTTACCGCCTGCAACCTCACTGTGCCCGCCCCGCACCATGCCCTAGCCCCA 561 GGTCTAGCCGGGCCCATTGCAGGGGGCAGCACTTGGGGGCATCTCCGGCACTTGGGTGGGACCAAGGAGATGCCACCATA 641 GACCTTTCCCTCGCCTTCTTCCTCCCTAGTCCGGGTTCCATTCTTTTCACCAGCACCCATCGCCCAAGGGGTACCGAGGG 721 GGGCAAGGGGTGTCCAGTCCAAGCCCACCCCCGCCTCGCCTTCCGCAAAACTGTGAGCAAAAAGCAATAGAAGCCTCGCC 801 CCCGCCCTTCCCCTTCGCAGGATTCGCCGAGTCTGTAGCCTCCCCGATCCAAGTTCCTAGACCTCATGGCTGTCCCCTCC 881 CACCAGTCACCTCCACTGCACAACTCGGGCGGGGGTGTGACACCTCTCCCCCACCCCCGACTCCGTGGTTTCCGTATCGT 961 CAACCCTTCAGCCGCCGACCCGGGAGGGGTCTGGCCTACACTGGTCTTCCCCTTCCCATCAACTCTTTCTGCTTGACAAT 1041 GTAGCAACCCAGGCCCCCCACCCACGGTCCTCCCCTTTTTCCTCTCCCTGACAATAAAGTCTGAATTTGTTCTGCCCTCC 1121 GCCCCTA Target sites
Provided by authors
Predicted by miRanda
DRVs
SNPs
DRVs & SNPs
|
||||||||||||||||||||
miRNA-target interactions (Predicted by miRanda) |
|
||||||||||||||||||||
DRVs in gene 3'UTRs | |||||||||||||||||||||
SNPs in gene 3'UTRs |
Experimental Support 1 for Functional miRNA-Target Interaction | |||||||
---|---|---|---|---|---|---|---|
miRNA:Target | ---- | ||||||
Validation Method |
|
||||||
Conditions | HEK293 | ||||||
Disease | 25946.0 | ||||||
Location of target site | 3'UTR | ||||||
Tools used in this research | TargetScan , miRTarCLIP , Piranha | ||||||
Original Description (Extracted from the article) |
...
"PAR-CLIP data was present in GSM714644. RNA binding protein: AGO2. Condition:completeT1
... - Kishore S; Jaskiewicz L; Burger L; Hausser et al., 2011, Nature methods. |
||||||
miRNA-target interactions (Provided by authors) |
|
||||||
Article |
- Kishore S; Jaskiewicz L; Burger L; Hausser et al. - Nature methods, 2011
Cross-linking and immunoprecipitation (CLIP) is increasingly used to map transcriptome-wide binding sites of RNA-binding proteins. We developed a method for CLIP data analysis, and applied it to compare CLIP with photoactivatable ribonucleoside-enhanced CLIP (PAR-CLIP) and to uncover how differences in cross-linking and ribonuclease digestion affect the identified sites. We found only small differences in accuracies of these methods in identifying binding sites of HuR, which binds low-complexity sequences, and Argonaute 2, which has a complex binding specificity. We found that cross-link-induced mutations led to single-nucleotide resolution for both PAR-CLIP and CLIP. Our results confirm the expectation from original CLIP publications that RNA-binding proteins do not protect their binding sites sufficiently under the denaturing conditions used during the CLIP procedure, and we show that extensive digestion with sequence-specific RNases strongly biases the recovered binding sites. This bias can be substantially reduced by milder nuclease digestion conditions.
LinkOut: [PMID: 21572407]
|
Experimental Support 2 for Functional miRNA-Target Interaction | |||||||
---|---|---|---|---|---|---|---|
miRNA:Target | ---- | ||||||
Validation Method |
|
||||||
Conditions | TZM-bl | ||||||
Location of target site | 3'UTR | ||||||
Tools used in this research | TargetScan , miRTarCLIP , Piranha | ||||||
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in GSM1462574. RNA binding protein: AGO2. Condition:TZM-bl ami BaL
... - Whisnant AW; Bogerd HP; Flores O; Ho P; et al., 2013, mBio. |
||||||
miRNA-target interactions (Provided by authors) |
|
||||||
Article |
- Whisnant AW; Bogerd HP; Flores O; Ho P; et al. - mBio, 2013
UNLABELLED: The question of how HIV-1 interfaces with cellular microRNA (miRNA) biogenesis and effector mechanisms has been highly controversial. Here, we first used deep sequencing of small RNAs present in two different infected cell lines (TZM-bl and C8166) and two types of primary human cells (CD4(+) peripheral blood mononuclear cells [PBMCs] and macrophages) to unequivocally demonstrate that HIV-1 does not encode any viral miRNAs. Perhaps surprisingly, we also observed that infection of T cells by HIV-1 has only a modest effect on the expression of cellular miRNAs at early times after infection. Comprehensive analysis of miRNA binding to the HIV-1 genome using the photoactivatable ribonucleoside-induced cross-linking and immunoprecipitation (PAR-CLIP) technique revealed several binding sites for cellular miRNAs, a subset of which were shown to be capable of mediating miRNA-mediated repression of gene expression. However, the main finding from this analysis is that HIV-1 transcripts are largely refractory to miRNA binding, most probably due to extensive viral RNA secondary structure. Together, these data demonstrate that HIV-1 neither encodes viral miRNAs nor strongly influences cellular miRNA expression, at least early after infection, and imply that HIV-1 transcripts have evolved to avoid inhibition by preexisting cellular miRNAs by adopting extensive RNA secondary structures that occlude most potential miRNA binding sites. IMPORTANCE: MicroRNAs (miRNAs) are a ubiquitous class of small regulatory RNAs that serve as posttranscriptional regulators of gene expression. Previous work has suggested that HIV-1 might subvert the function of the cellular miRNA machinery by expressing viral miRNAs or by dramatically altering the level of cellular miRNA expression. Using very sensitive approaches, we now demonstrate that neither of these ideas is in fact correct. Moreover, HIV-1 transcripts appear to largely avoid regulation by cellular miRNAs by adopting an extensive RNA secondary structure that occludes the ability of cellular miRNAs to interact with viral mRNAs. Together, these data suggest that HIV-1, rather than seeking to control miRNA function in infected cells, has instead evolved a mechanism to become largely invisible to cellular miRNA effector mechanisms.
LinkOut: [PMID: 23592263]
|
Experimental Support 3 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | HCT116 |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in ERX177603. RNA binding protein: AGO2. Condition:p53_D_AGO_CLIP_2_5
PAR-CLIP data was present in ERX177605. RNA binding protein: AGO2. Condition:KO_D_AGO_CLIP_2_7
PAR-CLIP data was present in ERX177610. RNA binding protein: AGO2. Condition:KO_V_AGO_CLIP_2_12
PAR-CLIP data was present in ERX177611. RNA binding protein: AGO2. Condition:p53_D_AGO_CLIP_3_1
PAR-CLIP data was present in ERX177615. RNA binding protein: AGO2. Condition:p53_D_AGO_CLIP_3_5
PAR-CLIP data was present in ERX177617. RNA binding protein: AGO2. Condition:KO_D_AGO_CLIP_3_7
PAR-CLIP data was present in ERX177620. RNA binding protein: AGO2. Condition:p53_V_AGO_CLIP_3_10
PAR-CLIP data was present in ERX177622. RNA binding protein: AGO2. Condition:KO_V_AGO_CLIP_3_12
PAR-CLIP data was present in ERX177623. RNA binding protein: AGO2. Condition:p53_D_AGO_CLIP_4_1
PAR-CLIP data was present in ERX177627. RNA binding protein: AGO2. Condition:p53_D_AGO_CLIP_4_5
PAR-CLIP data was present in ERX177629. RNA binding protein: AGO2. Condition:KO_D_AGO_CLIP_4_7
PAR-CLIP data was present in ERX177634. RNA binding protein: AGO2. Condition:KO_V_AGO_CLIP_4_12
... - Krell J; Stebbing J; Carissimi C; Dabrowska et al., 2016, Genome research. |
Article |
- Krell J; Stebbing J; Carissimi C; Dabrowska et al. - Genome research, 2016
DNA damage activates TP53-regulated surveillance mechanisms that are crucial in suppressing tumorigenesis. TP53 orchestrates these responses directly by transcriptionally modulating genes, including microRNAs (miRNAs), and by regulating miRNA biogenesis through interacting with the DROSHA complex. However, whether the association between miRNAs and AGO2 is regulated following DNA damage is not yet known. Here, we show that, following DNA damage, TP53 interacts with AGO2 to induce or reduce AGO2's association of a subset of miRNAs, including multiple let-7 family members. Furthermore, we show that specific mutations in TP53 decrease rather than increase the association of let-7 family miRNAs, reducing their activity without preventing TP53 from interacting with AGO2. This is consistent with the oncogenic properties of these mutants. Using AGO2 RIP-seq and PAR-CLIP-seq, we show that the DNA damage-induced increase in binding of let-7 family members to the RISC complex is functional. We unambiguously determine the global miRNA-mRNA interaction networks involved in the DNA damage response, validating them through the identification of miRNA-target chimeras formed by endogenous ligation reactions. We find that the target complementary region of the let-7 seed tends to have highly fixed positions and more variable ones. Additionally, we observe that miRNAs, whose cellular abundance or differential association with AGO2 is regulated by TP53, are involved in an intricate network of regulatory feedback and feedforward circuits. TP53-mediated regulation of AGO2-miRNA interaction represents a new mechanism of miRNA regulation in carcinogenesis.
LinkOut: [PMID: 26701625]
|
Experimental Support 4 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | Prostate Tissue |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in SRX1760597. RNA binding protein: AGO2. Condition:AGO-CLIP-LNCaP_C
PAR-CLIP data was present in SRX1760638. RNA binding protein: AGO2. Condition:AGO-CLIP-PC3-miR148
... - Hamilton MP; Rajapakshe KI; Bader DA; Cerne et al., 2016, Neoplasia (New York, N.Y.). |
Article |
- Hamilton MP; Rajapakshe KI; Bader DA; Cerne et al. - Neoplasia (New York, N.Y.), 2016
MicroRNA (miRNA) deregulation in prostate cancer (PCa) contributes to PCa initiation and metastatic progression. To comprehensively define the cancer-associated changes in miRNA targeting and function in commonly studied models of PCa, we performed photoactivatable ribonucleoside-enhanced cross-linking immunoprecipitation of the Argonaute protein in a panel of PCa cell lines modeling different stages of PCa progression. Using this comprehensive catalogue of miRNA targets, we analyzed miRNA targeting on known drivers of PCa and examined tissue-specific and stage-specific pathway targeting by miRNAs. We found that androgen receptor is the most frequently targeted PCa oncogene and that miR-148a targets the largest number of known PCa drivers. Globally, tissue-specific and stage-specific changes in miRNA targeting are driven by homeostatic response to active oncogenic pathways. Our findings indicate that, even in advanced PCa, the miRNA pool adapts to regulate continuing alterations in the cancer genome to balance oncogenic molecular changes. These findings are important because they are the first to globally characterize miRNA changes in PCa and demonstrate how the miRNA target spectrum responds to staged tumorigenesis.
LinkOut: [PMID: 27292025]
|
CLIP-seq Support 1 for dataset GSM714644 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | HEK293 / completeT1, repA |
Location of target site | ENST00000551109.1 | 3UTR | UUUUACCGCCUGCAACCUCACUG |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 21572407 / GSE28865 |
CLIP-seq Viewer | Link |
CLIP-seq Support 2 for dataset GSM1462574 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | TZM-bl / TZM-bl ami BaL |
Location of target site | ENST00000551109.1 | 3UTR | UUUUACCGCCUGCAACCUCACUG |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 23592263 / GSE59944 |
CLIP-seq Viewer | Link |
MiRNA-Target Expression Profile | |||||||
---|---|---|---|---|---|---|---|
|
MiRNA-Target Expression Profile (TCGA) | |||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
40 hsa-miR-3937 Target Genes:
Functional analysis:
ID | Target | Description | Validation methods | |||||||||
Strong evidence | Less strong evidence | |||||||||||
MIRT332487 | CD81 | CD81 molecule | 2 | 2 | ||||||||
MIRT441327 | NDUFA11 | NADH:ubiquinone oxidoreductase subunit A11 | 2 | 4 | ||||||||
MIRT454032 | EIF3CL | eukaryotic translation initiation factor 3 subunit C like | 2 | 2 | ||||||||
MIRT458086 | EIF3C | eukaryotic translation initiation factor 3 subunit C | 2 | 2 | ||||||||
MIRT460785 | VPS37B | VPS37B, ESCRT-I subunit | 2 | 2 | ||||||||
MIRT463150 | ZNF385A | zinc finger protein 385A | 2 | 4 | ||||||||
MIRT467162 | SREBF2 | sterol regulatory element binding transcription factor 2 | 2 | 2 | ||||||||
MIRT469618 | RAI1 | retinoic acid induced 1 | 2 | 4 | ||||||||
MIRT472258 | NFIC | nuclear factor I C | 2 | 2 | ||||||||
MIRT487587 | FAM83H | family with sequence similarity 83 member H | 2 | 4 | ||||||||
MIRT489302 | B4GALNT4 | beta-1,4-N-acetyl-galactosaminyltransferase 4 | 2 | 4 | ||||||||
MIRT489741 | GNAI2 | G protein subunit alpha i2 | 2 | 4 | ||||||||
MIRT490038 | PCSK4 | proprotein convertase subtilisin/kexin type 4 | 2 | 2 | ||||||||
MIRT490767 | SRCIN1 | SRC kinase signaling inhibitor 1 | 2 | 2 | ||||||||
MIRT491750 | SEMA3F | semaphorin 3F | 2 | 2 | ||||||||
MIRT492690 | PHYHIP | phytanoyl-CoA 2-hydroxylase interacting protein | 2 | 2 | ||||||||
MIRT504843 | RRP36 | ribosomal RNA processing 36 | 2 | 4 | ||||||||
MIRT510116 | IRAK3 | interleukin 1 receptor associated kinase 3 | 2 | 8 | ||||||||
MIRT525313 | FANCA | Fanconi anemia complementation group A | 2 | 4 | ||||||||
MIRT569801 | IGDCC3 | immunoglobulin superfamily DCC subclass member 3 | 2 | 2 | ||||||||
MIRT570224 | SLC27A1 | solute carrier family 27 member 1 | 2 | 2 | ||||||||
MIRT629378 | FAHD1 | fumarylacetoacetate hydrolase domain containing 1 | 2 | 2 | ||||||||
MIRT633104 | CBX5 | chromobox 5 | 2 | 2 | ||||||||
MIRT645036 | ATAD3C | ATPase family, AAA domain containing 3C | 2 | 2 | ||||||||
MIRT660973 | ABI2 | abl interactor 2 | 2 | 2 | ||||||||
MIRT671225 | CLSTN1 | calsyntenin 1 | 2 | 2 | ||||||||
MIRT672046 | SMTNL2 | smoothelin like 2 | 2 | 2 | ||||||||
MIRT677314 | CPSF2 | cleavage and polyadenylation specific factor 2 | 2 | 2 | ||||||||
MIRT678290 | PTRH2 | peptidyl-tRNA hydrolase 2 | 2 | 2 | ||||||||
MIRT693477 | ZNF707 | zinc finger protein 707 | 2 | 2 | ||||||||
MIRT693576 | PIGR | polymeric immunoglobulin receptor | 2 | 2 | ||||||||
MIRT696832 | PLLP | plasmolipin | 2 | 2 | ||||||||
MIRT700149 | RNF115 | ring finger protein 115 | 2 | 2 | ||||||||
MIRT703760 | FAM118A | family with sequence similarity 118 member A | 2 | 2 | ||||||||
MIRT705798 | ALDH6A1 | aldehyde dehydrogenase 6 family member A1 | 2 | 2 | ||||||||
MIRT709105 | SEPT4 | septin 4 | 2 | 2 | ||||||||
MIRT710235 | ARMCX6 | armadillo repeat containing, X-linked 6 | 2 | 2 | ||||||||
MIRT711422 | EPHA4 | EPH receptor A4 | 2 | 2 | ||||||||
MIRT712529 | CYTH2 | cytohesin 2 | 2 | 2 | ||||||||
MIRT714081 | ZNF532 | zinc finger protein 532 | 2 | 2 |
miRNA-Drug Resistance Associations | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|