pre-miRNA Information | |
---|---|
pre-miRNA | hsa-mir-4532 |
Genomic Coordinates | chr20: 57895394 - 57895444 |
Description | Homo sapiens miR-4532 stem-loop |
Comment | None |
RNA Secondary Structure |
Mature miRNA Information | |
---|---|
Mature miRNA | hsa-miR-4532 |
Sequence | 6| CCCCGGGGAGCCCGGCG |22 |
Evidence | Experimental |
Experiments | Illumina |
Putative Targets |
miRNA Expression profile | |
---|---|
Human miRNA Tissue Atlas | |
miRNAs in Extracellular Vesicles |
|
Circulating MicroRNA Expression Profiling |
Gene Information | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gene Symbol | PTPRF | ||||||||||||||||||||
Synonyms | BNAH2, LAR | ||||||||||||||||||||
Description | protein tyrosine phosphatase, receptor type F | ||||||||||||||||||||
Transcript | NM_002840 | ||||||||||||||||||||
Other Transcripts | NM_130440 | ||||||||||||||||||||
Expression | |||||||||||||||||||||
Putative miRNA Targets on PTPRF | |||||||||||||||||||||
3'UTR of PTPRF (miRNA target sites are highlighted) |
>PTPRF|NM_002840|3'UTR 1 CTACCGCTCCCCTCTCCTCCGCCACCCCCGCCGTGGGGCTCCGGAGGGGACCCAGCTCCTCTGAGCCATACCGACCATCG 81 TCCAGCCCTCCTACGCAGATGCTGTCACTGGCAGAGCACAGCCCACGGGGATCACAGCGTTTCAGGAACGTTGCCACACC 161 AATCAGAGAGCCTAGAACATCCCTGGGCAAGTGGATGGCCCAGCAGGCAGGCACTGTGGCCCTTCTGTCCACCAGACCCA 241 CCTGGAGCCCGCTTCAAGCTCTCTGTTGCGCTCCCGCATTTCTCATGCTTCTTCTCATGGGGTGGGGTTGGGGCAAAGCC 321 TCCTTTTTAATACATTAAGTGGGGTAGACTGAGGGATTTTAGCCTCTTCCCTCTGATTTTTCCTTTCGCGAATCCGTATC 401 TGCAGAATGGGCCACTGTAGGGGTTGGGGTTTATTTTGTTTTGTTTTTTTTTTTCTTGAGTTCACTTTGGATCCTTATTT 481 TGTATGACTTCTGCTGAAGGACAGAACATTGCCTTCCTCGTGCAGAGCTGGGGCTGCCAGCCTGAGCGGAGGCTCGGCCG 561 TGGGCCGGGAGGCAGTGCTGATCCGGCTGCTCCTCCAGCCCTTCAGACGAGATCCTGTTTCAGCTAAATGCAGGGAAACT 641 CAATGTTTTTTTAAGTTTTGTTTTCCCTTTAAAGCCTTTTTTTAGGCCACATTGACAGTGGTGGGCGGGGAGAAGATAGG 721 GAACACTCATCCCTGGTCGTCTATCCCAGTGTGTGTTTAACATTCACAGCCCAGAACCACAGATGTGTCTGGGAGAGCCT 801 GGCAAGGCATTCCTCATCACCATCGTGTTTGCAAAGGTTAAAACAAAAACAAAAAACCACAAAAATAAAAAACAAAAAAA 881 ACAAAAAACCCAAGAAAAAAAAAAAGAGTCAGCCCTTGGCTTCTGCTTCAAACCCTCAAGAGGGGAAGCAACTCCGTGTG 961 CCTGGGGTTCCCGAGGGAGCTGCTGGCTGACCTGGGCCCACAGAGCCTGGCTTTGGTCCCCAGCATTGCAGTATGGTGTG 1041 GTGTTTGTAGGCTGTGGGGTCTGGCTGTGTGGCCAAGGTGAATAGCACAGGTTAGGGTGTGTGCCACACCCCATGCACCT 1121 CAGGGCCAAGCGGGGGCGTGGCTGGCCTTTCAGGTCCAGGCCAGTGGGCCTGGTAGCACATGTCTGTCCTCAGAGCAGGG 1201 GCCAGATGATTTTCCTCCCTGGTTTGCAGCTGTTTTCAAAGCCCCCGATAATCGCTCTTTTCCACTCCAAGATGCCCTCA 1281 TAAACCAATGTGGCAAGACTACTGGACTTCTATCAATGGTACTCTAATCAGTCCTTATTATCCCAGCTTGCTGAGGGGCA 1361 GGGAGAGCGCCTCTTCCTCTGGGCAGCGCTATCTAGATAGGTAAGTGGGGGCGGGGAAGGGTGCATAGCTGTTTTAGCTG 1441 AGGGACGTGGTGCCGACGTCCCCAAACCTAGCTAGGCTAAGTCAAGATCAACATTCCAGGGTTGGTAATGTTGGATGATG 1521 AAACATTCATTTTTACCTTGTGGATGCTAGTGCTGTAGAGTTCACTGTTGTACACAGTCTGTTTTCTATTTGTTAAGAAA 1601 AACTACAGCATCATTGCATAATTCTTGATGGTAATAAATTTGAATAATCAGATTTCTTACAAACCAGGAAAAAAAAAAAA 1681 AAAAAA Target sites
Provided by authors
Predicted by miRanda
DRVs
SNPs
DRVs & SNPs
|
||||||||||||||||||||
miRNA-target interactions (Predicted by miRanda) |
|
||||||||||||||||||||
DRVs in gene 3'UTRs | |||||||||||||||||||||
SNPs in gene 3'UTRs |
Experimental Support 1 for Functional miRNA-Target Interaction | |||||||
---|---|---|---|---|---|---|---|
miRNA:Target | ---- | ||||||
Validation Method |
|
||||||
Conditions | HEK293 | ||||||
Location of target site | 3'UTR | ||||||
Tools used in this research | TargetScan , miRTarCLIP , Piranha | ||||||
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in GSM545216. RNA binding protein: AGO2. Condition:miR-124 transfection
... - Hafner M; Landthaler M; Burger L; Khorshid et al., 2010, Cell. |
||||||
miRNA-target interactions (Provided by authors) |
|
||||||
Article |
- Hafner M; Landthaler M; Burger L; Khorshid et al. - Cell, 2010
RNA transcripts are subject to posttranscriptional gene regulation involving hundreds of RNA-binding proteins (RBPs) and microRNA-containing ribonucleoprotein complexes (miRNPs) expressed in a cell-type dependent fashion. We developed a cell-based crosslinking approach to determine at high resolution and transcriptome-wide the binding sites of cellular RBPs and miRNPs. The crosslinked sites are revealed by thymidine to cytidine transitions in the cDNAs prepared from immunopurified RNPs of 4-thiouridine-treated cells. We determined the binding sites and regulatory consequences for several intensely studied RBPs and miRNPs, including PUM2, QKI, IGF2BP1-3, AGO/EIF2C1-4 and TNRC6A-C. Our study revealed that these factors bind thousands of sites containing defined sequence motifs and have distinct preferences for exonic versus intronic or coding versus untranslated transcript regions. The precise mapping of binding sites across the transcriptome will be critical to the interpretation of the rapidly emerging data on genetic variation between individuals and how these variations contribute to complex genetic diseases.
LinkOut: [PMID: 20371350]
|
Experimental Support 2 for Functional miRNA-Target Interaction | |||||||
---|---|---|---|---|---|---|---|
miRNA:Target | ---- | ||||||
Validation Method |
|
||||||
Conditions | HEK293 | ||||||
Disease | 5792.0 | ||||||
Location of target site | 3'UTR | ||||||
Tools used in this research | TargetScan , miRTarCLIP , Piranha | ||||||
Original Description (Extracted from the article) |
...
"PAR-CLIP data was present in GSM714644. RNA binding protein: AGO2. Condition:completeT1
... - Kishore S; Jaskiewicz L; Burger L; Hausser et al., 2011, Nature methods. |
||||||
miRNA-target interactions (Provided by authors) |
|
||||||
Article |
- Kishore S; Jaskiewicz L; Burger L; Hausser et al. - Nature methods, 2011
Cross-linking and immunoprecipitation (CLIP) is increasingly used to map transcriptome-wide binding sites of RNA-binding proteins. We developed a method for CLIP data analysis, and applied it to compare CLIP with photoactivatable ribonucleoside-enhanced CLIP (PAR-CLIP) and to uncover how differences in cross-linking and ribonuclease digestion affect the identified sites. We found only small differences in accuracies of these methods in identifying binding sites of HuR, which binds low-complexity sequences, and Argonaute 2, which has a complex binding specificity. We found that cross-link-induced mutations led to single-nucleotide resolution for both PAR-CLIP and CLIP. Our results confirm the expectation from original CLIP publications that RNA-binding proteins do not protect their binding sites sufficiently under the denaturing conditions used during the CLIP procedure, and we show that extensive digestion with sequence-specific RNases strongly biases the recovered binding sites. This bias can be substantially reduced by milder nuclease digestion conditions.
LinkOut: [PMID: 21572407]
|
Experimental Support 3 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | Hela |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
HITS-CLIP data was present in GSM1048187. RNA binding protein: AGO2. Condition:Hela_AGO2_CLIP_control
... - Xue Y; Ouyang K; Huang J; Zhou Y; Ouyang H; et al., 2013, Cell. |
Article |
- Xue Y; Ouyang K; Huang J; Zhou Y; Ouyang H; et al. - Cell, 2013
The induction of pluripotency or trans-differentiation of one cell type to another can be accomplished with cell-lineage-specific transcription factors. Here, we report that repression of a single RNA binding polypyrimidine-tract-binding (PTB) protein, which occurs during normal brain development via the action of miR-124, is sufficient to induce trans-differentiation of fibroblasts into functional neurons. Besides its traditional role in regulated splicing, we show that PTB has a previously undocumented function in the regulation of microRNA functions, suppressing or enhancing microRNA targeting by competitive binding on target mRNA or altering local RNA secondary structure. A key event during neuronal induction is the relief of PTB-mediated blockage of microRNA action on multiple components of the REST complex, thereby derepressing a large array of neuronal genes, including miR-124 and multiple neuronal-specific transcription factors, in nonneuronal cells. This converts a negative feedback loop to a positive one to elicit cellular reprogramming to the neuronal lineage.
LinkOut: [PMID: 23313552]
|
Experimental Support 4 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | TZM-bl |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in GSM1462574. RNA binding protein: AGO2. Condition:TZM-bl ami BaL
... - Whisnant AW; Bogerd HP; Flores O; Ho P; et al., 2013, mBio. |
Article |
- Whisnant AW; Bogerd HP; Flores O; Ho P; et al. - mBio, 2013
UNLABELLED: The question of how HIV-1 interfaces with cellular microRNA (miRNA) biogenesis and effector mechanisms has been highly controversial. Here, we first used deep sequencing of small RNAs present in two different infected cell lines (TZM-bl and C8166) and two types of primary human cells (CD4(+) peripheral blood mononuclear cells [PBMCs] and macrophages) to unequivocally demonstrate that HIV-1 does not encode any viral miRNAs. Perhaps surprisingly, we also observed that infection of T cells by HIV-1 has only a modest effect on the expression of cellular miRNAs at early times after infection. Comprehensive analysis of miRNA binding to the HIV-1 genome using the photoactivatable ribonucleoside-induced cross-linking and immunoprecipitation (PAR-CLIP) technique revealed several binding sites for cellular miRNAs, a subset of which were shown to be capable of mediating miRNA-mediated repression of gene expression. However, the main finding from this analysis is that HIV-1 transcripts are largely refractory to miRNA binding, most probably due to extensive viral RNA secondary structure. Together, these data demonstrate that HIV-1 neither encodes viral miRNAs nor strongly influences cellular miRNA expression, at least early after infection, and imply that HIV-1 transcripts have evolved to avoid inhibition by preexisting cellular miRNAs by adopting extensive RNA secondary structures that occlude most potential miRNA binding sites. IMPORTANCE: MicroRNAs (miRNAs) are a ubiquitous class of small regulatory RNAs that serve as posttranscriptional regulators of gene expression. Previous work has suggested that HIV-1 might subvert the function of the cellular miRNA machinery by expressing viral miRNAs or by dramatically altering the level of cellular miRNA expression. Using very sensitive approaches, we now demonstrate that neither of these ideas is in fact correct. Moreover, HIV-1 transcripts appear to largely avoid regulation by cellular miRNAs by adopting an extensive RNA secondary structure that occludes the ability of cellular miRNAs to interact with viral mRNAs. Together, these data suggest that HIV-1, rather than seeking to control miRNA function in infected cells, has instead evolved a mechanism to become largely invisible to cellular miRNA effector mechanisms.
LinkOut: [PMID: 23592263]
|
Experimental Support 5 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | HCT116 |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in ERX177630. RNA binding protein: AGO2. Condition:KO_V_AGO_CLIP_4_8
PAR-CLIP data was present in ERX177624. RNA binding protein: AGO2. Condition:p53_V_AGO_CLIP_4_2
... - Krell J; Stebbing J; Carissimi C; Dabrowska et al., 2016, Genome research. |
Article |
- Krell J; Stebbing J; Carissimi C; Dabrowska et al. - Genome research, 2016
DNA damage activates TP53-regulated surveillance mechanisms that are crucial in suppressing tumorigenesis. TP53 orchestrates these responses directly by transcriptionally modulating genes, including microRNAs (miRNAs), and by regulating miRNA biogenesis through interacting with the DROSHA complex. However, whether the association between miRNAs and AGO2 is regulated following DNA damage is not yet known. Here, we show that, following DNA damage, TP53 interacts with AGO2 to induce or reduce AGO2's association of a subset of miRNAs, including multiple let-7 family members. Furthermore, we show that specific mutations in TP53 decrease rather than increase the association of let-7 family miRNAs, reducing their activity without preventing TP53 from interacting with AGO2. This is consistent with the oncogenic properties of these mutants. Using AGO2 RIP-seq and PAR-CLIP-seq, we show that the DNA damage-induced increase in binding of let-7 family members to the RISC complex is functional. We unambiguously determine the global miRNA-mRNA interaction networks involved in the DNA damage response, validating them through the identification of miRNA-target chimeras formed by endogenous ligation reactions. We find that the target complementary region of the let-7 seed tends to have highly fixed positions and more variable ones. Additionally, we observe that miRNAs, whose cellular abundance or differential association with AGO2 is regulated by TP53, are involved in an intricate network of regulatory feedback and feedforward circuits. TP53-mediated regulation of AGO2-miRNA interaction represents a new mechanism of miRNA regulation in carcinogenesis.
LinkOut: [PMID: 26701625]
|
CLIP-seq Support 1 for dataset GSM1048187 | |
---|---|
Method / RBP | HITS-CLIP / AGO2 |
Cell line / Condition | Hela / Hela_AGO2_CLIP_control |
Location of target site | ENST00000372414.3 | 3UTR | AUCUCGGCUCACUGCAACCUCUGCCCCCCGGGUUCAAGC |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 23313552 / GSE42701 |
CLIP-seq Viewer | Link |
CLIP-seq Support 2 for dataset GSM545216 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | HEK293 / miR-124 transfection |
Location of target site | ENST00000372414.3 | 3UTR | CAACCUCUGCCCCCCGGGUUCAAGCAAUUCU |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 20371350 / GSE21578 |
CLIP-seq Viewer | Link |
CLIP-seq Support 3 for dataset GSM714644 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | HEK293 / completeT1, repA |
Location of target site | ENST00000372414.3 | 3UTR | CCCCCCGGGUUCAAGCAAUUCU |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 21572407 / GSE28865 |
CLIP-seq Viewer | Link |
CLIP-seq Support 4 for dataset GSM1462574 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | TZM-bl / TZM-bl ami BaL |
Location of target site | ENST00000372414.3 | 3UTR | CUCACUGCAACCUCUGCCCCCCGGGUUCAAGCAAUUCUUCUG |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 23592263 / GSE59944 |
CLIP-seq Viewer | Link |
MiRNA-Target Expression Profile | |||||||
---|---|---|---|---|---|---|---|
|
MiRNA-Target Expression Profile (TCGA) | |||||||
---|---|---|---|---|---|---|---|
|
119 hsa-miR-4532 Target Genes:
Functional analysis:
ID | Target | Description | Validation methods | |||||||||
Strong evidence | Less strong evidence | |||||||||||
MIRT451366 | UQCR11 | ubiquinol-cytochrome c reductase, complex III subunit XI | 2 | 2 | ||||||||
MIRT451448 | ZNF556 | zinc finger protein 556 | 2 | 4 | ||||||||
MIRT458550 | CYP2B6 | cytochrome P450 family 2 subfamily B member 6 | 2 | 2 | ||||||||
MIRT460274 | SLC26A2 | solute carrier family 26 member 2 | 2 | 2 | ||||||||
MIRT460365 | TXNDC16 | thioredoxin domain containing 16 | 2 | 4 | ||||||||
MIRT460539 | TM4SF5 | transmembrane 4 L six family member 5 | 2 | 2 | ||||||||
MIRT463626 | YY1 | YY1 transcription factor | 2 | 2 | ||||||||
MIRT468524 | SERTAD2 | SERTA domain containing 2 | 2 | 4 | ||||||||
MIRT469966 | PTPRF | protein tyrosine phosphatase, receptor type F | 2 | 8 | ||||||||
MIRT470076 | PTGES2 | prostaglandin E synthase 2 | 2 | 2 | ||||||||
MIRT474926 | KCTD20 | potassium channel tetramerization domain containing 20 | 2 | 2 | ||||||||
MIRT479976 | CARD10 | caspase recruitment domain family member 10 | 2 | 2 | ||||||||
MIRT485533 | GPRIN1 | G protein regulated inducer of neurite outgrowth 1 | 2 | 2 | ||||||||
MIRT485939 | ECSIT | ECSIT signalling integrator | 2 | 4 | ||||||||
MIRT486421 | RXRA | retinoid X receptor alpha | 2 | 2 | ||||||||
MIRT487665 | HPCAL1 | hippocalcin like 1 | 2 | 4 | ||||||||
MIRT488113 | POU3F1 | POU class 3 homeobox 1 | 2 | 4 | ||||||||
MIRT490648 | FEM1A | fem-1 homolog A | 2 | 2 | ||||||||
MIRT491313 | LRFN1 | leucine rich repeat and fibronectin type III domain containing 1 | 2 | 2 | ||||||||
MIRT491345 | CPNE5 | copine 5 | 2 | 2 | ||||||||
MIRT492688 | PHYHIP | phytanoyl-CoA 2-hydroxylase interacting protein | 2 | 2 | ||||||||
MIRT496879 | AHCYL2 | adenosylhomocysteinase like 2 | 2 | 2 | ||||||||
MIRT499243 | VAV3 | vav guanine nucleotide exchange factor 3 | 2 | 4 | ||||||||
MIRT508211 | SLC35E1 | solute carrier family 35 member E1 | 2 | 2 | ||||||||
MIRT532712 | SNRPD3 | small nuclear ribonucleoprotein D3 polypeptide | 2 | 2 | ||||||||
MIRT540807 | SLC35F5 | solute carrier family 35 member F5 | 2 | 2 | ||||||||
MIRT563529 | TAF8 | TATA-box binding protein associated factor 8 | 2 | 2 | ||||||||
MIRT607723 | LIMS1 | LIM zinc finger domain containing 1 | 2 | 2 | ||||||||
MIRT608089 | CRISPLD2 | cysteine rich secretory protein LCCL domain containing 2 | 2 | 2 | ||||||||
MIRT618519 | SELPLG | selectin P ligand | 2 | 2 | ||||||||
MIRT624702 | AQR | aquarius intron-binding spliceosomal factor | 2 | 2 | ||||||||
MIRT624769 | AKR1D1 | aldo-keto reductase family 1 member D1 | 2 | 2 | ||||||||
MIRT629974 | MRPL36 | mitochondrial ribosomal protein L36 | 2 | 2 | ||||||||
MIRT631355 | ZFP82 | ZFP82 zinc finger protein | 2 | 2 | ||||||||
MIRT631425 | CDNF | cerebral dopamine neurotrophic factor | 2 | 2 | ||||||||
MIRT631664 | NDUFV3 | NADH:ubiquinone oxidoreductase subunit V3 | 2 | 2 | ||||||||
MIRT631734 | SF3B1 | splicing factor 3b subunit 1 | 2 | 2 | ||||||||
MIRT632333 | TCEANC2 | transcription elongation factor A N-terminal and central domain containing 2 | 2 | 2 | ||||||||
MIRT632418 | SLC30A5 | solute carrier family 30 member 5 | 2 | 2 | ||||||||
MIRT632530 | PSMB2 | proteasome subunit beta 2 | 2 | 2 | ||||||||
MIRT633263 | LDLR | low density lipoprotein receptor | 2 | 2 | ||||||||
MIRT634326 | SLC43A2 | solute carrier family 43 member 2 | 2 | 2 | ||||||||
MIRT634752 | CRCP | CGRP receptor component | 2 | 2 | ||||||||
MIRT635411 | KIAA1614 | KIAA1614 | 2 | 2 | ||||||||
MIRT636280 | RFFL | ring finger and FYVE like domain containing E3 ubiquitin protein ligase | 2 | 2 | ||||||||
MIRT636290 | RAD51L3-RFFL | RAD51L3-RFFL readthrough | 2 | 2 | ||||||||
MIRT641737 | TXNL1 | thioredoxin like 1 | 2 | 2 | ||||||||
MIRT643527 | ERAP2 | endoplasmic reticulum aminopeptidase 2 | 2 | 2 | ||||||||
MIRT643554 | C11orf70 | chromosome 11 open reading frame 70 | 2 | 2 | ||||||||
MIRT647026 | NQO2 | N-ribosyldihydronicotinamide:quinone reductase 2 | 2 | 2 | ||||||||
MIRT647297 | RBM43 | RNA binding motif protein 43 | 2 | 2 | ||||||||
MIRT648123 | SEMA3E | semaphorin 3E | 2 | 4 | ||||||||
MIRT648610 | TPCN2 | two pore segment channel 2 | 2 | 2 | ||||||||
MIRT648716 | IL10RB | interleukin 10 receptor subunit beta | 2 | 2 | ||||||||
MIRT649424 | CDC14B | cell division cycle 14B | 2 | 2 | ||||||||
MIRT650028 | DSG3 | desmoglein 3 | 2 | 2 | ||||||||
MIRT650280 | TAS2R5 | taste 2 receptor member 5 | 2 | 2 | ||||||||
MIRT654238 | RNF115 | ring finger protein 115 | 2 | 2 | ||||||||
MIRT657031 | KCNJ6 | potassium voltage-gated channel subfamily J member 6 | 2 | 2 | ||||||||
MIRT658406 | FAM212B | family with sequence similarity 212 member B | 2 | 2 | ||||||||
MIRT661079 | FFAR2 | free fatty acid receptor 2 | 2 | 2 | ||||||||
MIRT661528 | NWD1 | NACHT and WD repeat domain containing 1 | 2 | 2 | ||||||||
MIRT661875 | PDLIM5 | PDZ and LIM domain 5 | 2 | 2 | ||||||||
MIRT662099 | ZNF419 | zinc finger protein 419 | 2 | 2 | ||||||||
MIRT663637 | HM13 | histocompatibility minor 13 | 2 | 2 | ||||||||
MIRT663702 | ABHD17B | abhydrolase domain containing 17B | 2 | 2 | ||||||||
MIRT663844 | TRIM72 | tripartite motif containing 72 | 2 | 2 | ||||||||
MIRT664768 | MESDC2 | mesoderm development LRP chaperone | 2 | 2 | ||||||||
MIRT665480 | VSTM4 | V-set and transmembrane domain containing 4 | 2 | 2 | ||||||||
MIRT666532 | RNF157 | ring finger protein 157 | 2 | 2 | ||||||||
MIRT668106 | GK5 | glycerol kinase 5 (putative) | 2 | 2 | ||||||||
MIRT669741 | HSPE1-MOB4 | HSPE1-MOB4 readthrough | 2 | 2 | ||||||||
MIRT671009 | MOB4 | MOB family member 4, phocein | 2 | 2 | ||||||||
MIRT671582 | SPIRE2 | spire type actin nucleation factor 2 | 2 | 2 | ||||||||
MIRT673260 | INO80 | INO80 complex subunit | 2 | 2 | ||||||||
MIRT673532 | ADRBK2 | G protein-coupled receptor kinase 3 | 2 | 2 | ||||||||
MIRT674713 | FAM73A | mitoguardin 1 | 2 | 2 | ||||||||
MIRT675204 | ZNF554 | zinc finger protein 554 | 2 | 2 | ||||||||
MIRT676487 | DSN1 | DSN1 homolog, MIS12 kinetochore complex component | 2 | 2 | ||||||||
MIRT676704 | GXYLT2 | glucoside xylosyltransferase 2 | 2 | 2 | ||||||||
MIRT676850 | ZMYM1 | zinc finger MYM-type containing 1 | 2 | 2 | ||||||||
MIRT676854 | RAB3B | RAB3B, member RAS oncogene family | 2 | 2 | ||||||||
MIRT676914 | PHLDA3 | pleckstrin homology like domain family A member 3 | 2 | 2 | ||||||||
MIRT676999 | CYP20A1 | cytochrome P450 family 20 subfamily A member 1 | 2 | 2 | ||||||||
MIRT677187 | PDE12 | phosphodiesterase 12 | 2 | 2 | ||||||||
MIRT677472 | SLC7A11 | solute carrier family 7 member 11 | 2 | 2 | ||||||||
MIRT677561 | C19orf52 | translocase of inner mitochondrial membrane 29 | 2 | 2 | ||||||||
MIRT677778 | FKTN | fukutin | 2 | 2 | ||||||||
MIRT677895 | DCP1A | decapping mRNA 1A | 2 | 2 | ||||||||
MIRT677995 | GATC | glutamyl-tRNA amidotransferase subunit C | 2 | 2 | ||||||||
MIRT678238 | HMGB1 | high mobility group box 1 | 2 | 4 | ||||||||
MIRT678312 | MCM8 | minichromosome maintenance 8 homologous recombination repair factor | 2 | 2 | ||||||||
MIRT678436 | PDE4C | phosphodiesterase 4C | 2 | 2 | ||||||||
MIRT678479 | RNF222 | ring finger protein 222 | 2 | 2 | ||||||||
MIRT678590 | ZNF91 | zinc finger protein 91 | 2 | 2 | ||||||||
MIRT678862 | SLC7A14 | solute carrier family 7 member 14 | 2 | 2 | ||||||||
MIRT679240 | LRP10 | LDL receptor related protein 10 | 2 | 2 | ||||||||
MIRT679387 | WDR92 | WD repeat domain 92 | 2 | 2 | ||||||||
MIRT679500 | ZNF106 | zinc finger protein 106 | 2 | 2 | ||||||||
MIRT679580 | UGGT1 | UDP-glucose glycoprotein glucosyltransferase 1 | 2 | 2 | ||||||||
MIRT679826 | TMEM106B | transmembrane protein 106B | 2 | 2 | ||||||||
MIRT679859 | ZFP30 | ZFP30 zinc finger protein | 2 | 2 | ||||||||
MIRT680472 | C3 | complement C3 | 2 | 2 | ||||||||
MIRT683698 | LAX1 | lymphocyte transmembrane adaptor 1 | 2 | 2 | ||||||||
MIRT684267 | PRPF4 | pre-mRNA processing factor 4 | 2 | 2 | ||||||||
MIRT689404 | ZNF573 | zinc finger protein 573 | 2 | 2 | ||||||||
MIRT694756 | ZNF843 | zinc finger protein 843 | 2 | 2 | ||||||||
MIRT695955 | FANCM | Fanconi anemia complementation group M | 2 | 2 | ||||||||
MIRT696365 | EIF2S3 | eukaryotic translation initiation factor 2 subunit gamma | 2 | 2 | ||||||||
MIRT700681 | PPAP2B | phospholipid phosphatase 3 | 2 | 2 | ||||||||
MIRT701214 | ORAI2 | ORAI calcium release-activated calcium modulator 2 | 2 | 2 | ||||||||
MIRT702195 | LRRC58 | leucine rich repeat containing 58 | 2 | 2 | ||||||||
MIRT706799 | RAI1 | retinoic acid induced 1 | 2 | 2 | ||||||||
MIRT711086 | NEUROD2 | neuronal differentiation 2 | 2 | 2 | ||||||||
MIRT715997 | RGS12 | regulator of G protein signaling 12 | 2 | 2 | ||||||||
MIRT716399 | SEPT5 | septin 5 | 2 | 2 | ||||||||
MIRT718442 | RAB11B | RAB11B, member RAS oncogene family | 2 | 2 | ||||||||
MIRT722159 | ARHGAP40 | Rho GTPase activating protein 40 | 2 | 2 | ||||||||
MIRT724960 | PTK6 | protein tyrosine kinase 6 | 2 | 2 |
miRNA-Drug Associations | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
miRNA-Drug Resistance Associations | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|