pre-miRNA Information | |
---|---|
pre-miRNA | hsa-mir-642b |
Genomic Coordinates | chr19: 45674932 - 45675008 |
Description | Homo sapiens miR-642b stem-loop |
Comment | None |
RNA Secondary Structure | ![]() |
Associated Diseases | ![]() |
Mature miRNA Information | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mature miRNA | hsa-miR-642b-5p | |||||||||||||||||||||
Sequence | 10| GGUUCCCUCUCCAAAUGUGUCU |31 | |||||||||||||||||||||
Evidence | Not_experimental | |||||||||||||||||||||
Experiments | DRVs in miRNA |
|
||||||||||||||||||||
SNPs in miRNA |
|
|||||||||||||||||||||
Putative Targets |
miRNA Expression profile | |
---|---|
Human miRNA Tissue Atlas | |
Circulating MicroRNA Expression Profiling |
Gene Information | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gene Symbol | ZDHHC20 | ||||||||||||||||||||
Synonyms | 4933421L13Rik, DHHC-20, DHHC20 | ||||||||||||||||||||
Description | zinc finger DHHC-type containing 20 | ||||||||||||||||||||
Transcript | NM_153251 | ||||||||||||||||||||
Expression | |||||||||||||||||||||
Putative miRNA Targets on ZDHHC20 | |||||||||||||||||||||
3'UTR of ZDHHC20 (miRNA target sites are highlighted) |
>ZDHHC20|NM_153251|3'UTR 1 AAACATTATAGACTGGTATTTTCAATTTTCATTTGCAAGAAAATGATCAGTGGAATGAAATAACTGAAGTATAACAGAAG 81 ATATATTTTTTAAAACGGAAAGCCTTTGTACAGTTCCTGGGATTCACAGAAGCACTACTCCAGAGCAGAATGATGCCTTA 161 ATCTTAAGTGTCCATTTGTGCAGCATTGACTTAGAGCTACAAAAGTGACTTAATGTTATTCTGGAAATAATACTTACCTG 241 TTATGAGTTGCTATAATATGAGCTGTCATCACATTTTAACATGCATATGTATTTTTTGATACCTGAATTACATTATTAGA 321 ATAAGTATCCATATACATTTTCACTCCAAAAACACAAGCTTAAAAACTTTAAAGTACATCTAGGGCAAATGGTGGCTGAA 401 AGTGAATAATATTCAAATTACTGTTGCTTGTACTGTATAAGGAAAACTGCTTTTTTAAATTGGGTATTTGCTAATTTATA 481 ATTACTATTTTATACTTTTCAACATTTTTAATAACTTTTTTTATTGTTGGCTATAACAGAAGGATTCAGATATCTAAATA 561 TCATTTAGAACATAGAACACATTGGTCTAATTCATCGAAAGCTTAGTTATGAGCATTAATACAACCATGTAGTAGAGCAA 641 GTGCCCAAGGTTTAAAGGGAACTTGGCAGTATAAGAAATATTTTGGGTTCTCTCTGCTATTTTATAGCTTTTTTTGTTGA 721 ACTTTCAGGGGTATGTACATGGGCAGAGAAACACAAAGGTACATGTGCTGGAGAATACTGGACACAGTAGGAAGAAGTAT 801 AGGTGTCCAGAAGAAAATCTAAGAGGAATATTGTAATTTGTTAAAAAAAATAGTTTTGAGTTTTAACAGCAGTTAGAATA 881 AAGCATGCTGTTGACTTCACTTTCAAATTTCAGTGTAGGTAATGACTAAAAATTACTTTGAAACTTTTTACAGTAATACT 961 GTAATAGCTTAAACAGTGATTTAAAATGCAATTTAAACTAGGCAAAAAAAACTTTAGAGTAAGTTTTCCTCCTGGCTGTC 1041 AGTTGGAAATTCTAACCTGAGTGGTCATTTTACATTCCCAGTCTCTTGAGAAGTGGATTCTACTCTTAGACGCACAGTCT 1121 GAAGTCTGACTTCCTAACGGCAACCCCTTTATGACTAGACACATTTCTCCTTTTTCCTTTTAAAATCTAAGCGACAGGAG 1201 GTGTTGCATTAACTCCAAGGAAAAGTACAGAATAAACAATGTAGAAATGTCACTCCTCATTTACACCTTTTAGACAGACA 1281 GACACACACACACACACACCCCCCCCAAAATAATTGATTGCTTCCAGTGAGTGGGTGGAGATGAATCTCAGCAGCATCTG 1361 TGAGTACTACAGGTTGGAGCTTCCTGTCTGTAAAATGGGACTGCAGGGGAGGGGGTGTTGTGAATAAGTTGGACTGGATG 1441 ACTTCTAACATTCTGTGATGCCTAATTTTGCAAAATCACTTTTCATTCACCCAATAAATTTTTTTCTTCTTTTTTCCACA 1521 GAGTTTTGCTCTGTCTCCCAGGCAGGAGTGCAGTGGCGGGATCTTGGCTCGCTGCAACCTCTGCCTTCCAGGTTCAATAG 1601 AGTCTCCTGCCTCAGCCTCCCAAGTAGCTGGGATTACAGGCTCATGCCACCATGCCCGGCTAATTTTCACATTTTTAGAA 1681 GAGACGAGGTTTCACCATGTTGACCAGGCTGATCACTAACTCCTGACCTCAAATAATCCACCCACCTCAGCTTCCCAAAG 1761 TGCTGGGATTACAGGCGTGAGCCACCACGCCCCGCCCCGGTAAATTTTTTGGAGTACCTTCTGTATGCTAAATAATAAAC 1841 TAGGAATAGCTCTGTCATTTCCTAGTACAGCATAAATTTTATGGTTGCTACTGTAGGTTTATAATTTGTTTATAATTTGG 1921 CCTAATTTCCATCAGCCATACTAATATTGGATTTTAAAAGGAGGCAACTTTTTTTCTTTTTGAACCAAAGGAATGAGTTA 2001 GCTTTGAAAACATAATTTGGGATATTATAGTATGGATTCTTCTACCTTTGTTTCAACTCCTTAGTAATCTTGATTCTAGC 2081 AAACTAGAATGAGATTTAAGAGATACCAATTATTGCTGGGTGTGGTGGCTCATGCCTGTAATCCCAGCACTTTGGGAGGC 2161 CAAGGCTGGCGGATCACCTGAGGTCAGGGGTTCGAGATTAGCCTGGTCAAAATGGCAAAACCCTGTCTCCACTAAAAATA 2241 CAAAAAAACCCCAAAACTGTCCAGGCATGGTGGCACACGCCTGTAGTCCCAACTACTCGGGAGGTGGAGGCAGGAGAATC 2321 ACTTGAACCCAGGAGGTGGAGGTCGCAGTGAGCCGAGATCGTGCCACTGCACTCCAGCCTGGGCGACGAGTGAAACTCCA 2401 TCTCAAAAATATATATATATATCAATTACCAACTAAAAACATAACTCCAGTTTGGCAGTTTGCATATTATAAGGAGATAA 2481 ATGTTAAAACATACTTGACTACTTTCAGAAATGTTCTCCTGGTACTTTTTGCATTTCTACATTCAGATAAAAAGATTTGC 2561 ATGCACCTGGCTAACGCCAAGGGAACTTCATTTTTTTCTTCACTATTATGCACTTTCATGGTATAGTCTTTCTCAGTTCT 2641 TTTAATTTTTGTTATTTAACATCTTTAATAGCACAGCAAACATCTTTTCAGAAATTTTCAGTTAAAGCCTTTGAATTACT 2721 TATCTTTGATTTAATTTACAGCCAGCATTTTGCCACGTTCTAAATAATATTTAGCTCAACTGATTCATACGTATTAATGA 2801 CCATTCTAGCAAAGGCCTACAAGTGGTGTGGGAATCAGGGAAAGGCTGCCTCTTTGGTATCTCAACTGGTATTGATTATT 2881 GCTATCAACTATTTGGGGAGAAAAAATCAAAATGAAGCCCTGTCAAATTTTAGAAGTACTATCTTTGGTCCTTCAAACAC 2961 TTTGTGATGACACCTTAAGAAAAATAAAGTTGAAGTTCAGGTCTTGCCATTGCCATTACAGACAAATTAGGAGACTTGGT 3041 TTACCTGGGAACAAATTTACTTGAATATTCAGTACCTGAAACTATGCCAAACCAAAGAGCAGCTGCAGTACATTCGTTAT 3121 TTTAAATGAACAAGTTTACAAAGTTTATTTTCATCTATACGTAAGGATGATTTTTTTAAAACTTTTTACATATTAGTGGT 3201 TATGATCCAATGTGTCATGAGTGAATTTAACTGTAAGGTGGTTTAAATCAAATATGCAATGTTTACTTGAATTGTATTTC 3281 TATTAGCAGATTTTGACTATGTTTACAGGACGGTTTAAATTAAGGATTATCAGGCATGTGAGATCTTTCAGTTATCTTTA 3361 AAGTAGATGTATATTAAGGGCTTAGATTTAGGATCTACATATTCTGGGCATTGAATAGGCAGTAACTTACAAATAAGTTT 3441 TGCTTACCTTTTGTTCTAGGGACTAGCACTGCTATCAATGGAAAGTATTTTTAACTAATCTGTTATTAAGAAAGTCATAT 3521 TTTTGCATTTCAGCCAAAATAAAGACCGCCTGTAATAATCTGTTAGAAACAGATAATACATGTCTGAAATCCATATGTTT 3601 CATATGATCTAAACTGTATTTTCCAATTTAAATTAAAAATGTAATATAGATTCAGAAAGGTTCATATTTTTCTAATGACT 3681 TCATTCTATATTATTTTGTTAGGTTGCATAAAGAAGCAAGGAATTGTACTTGTATTAAAAGATGAAGAAAGCTATTAGGT 3761 ATATTTGTACATGACTGCAAATGAGTCTATGCCCGTTTAAAAGAAAAGATGGACACTATTTTAAAGTGAGCTTTAATATG 3841 CTTTTATATAAACAAATTTGAAGTACAGTTTAGTTTGGTTGTGTTTACCTAACAAGTACCATAAGCCTTGTGTTTGTTCT 3921 TATTTGTATAATCCTAGCCTGTGACTTAATGTTGATGCTTTGCTTTGTCTTTTGGCTGGCCTAACCTACATTGACATGTA 4001 CACAGAACATTTTAAAACTTTTTTTTTCAAAAGTCATAATGAATTACTTTATTAATAAACAAAGTCTTGTATTTGAAAAA 4081 AAAAAAAAAAAAA Target sites
Provided by authors
Predicted by miRanda
DRVs
SNPs
DRVs & SNPs
|
||||||||||||||||||||
miRNA-target interactions (Predicted by miRanda) |
|
||||||||||||||||||||
DRVs in gene 3'UTRs | |||||||||||||||||||||
SNPs in gene 3'UTRs |
Experimental Support 1 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | HEK293 |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in GSM545216. RNA binding protein: AGO2. Condition:miR-124 transfection
... - Hafner M; Landthaler M; Burger L; Khorshid et al., 2010, Cell. |
Article |
- Hafner M; Landthaler M; Burger L; Khorshid et al. - Cell, 2010
RNA transcripts are subject to posttranscriptional gene regulation involving hundreds of RNA-binding proteins (RBPs) and microRNA-containing ribonucleoprotein complexes (miRNPs) expressed in a cell-type dependent fashion. We developed a cell-based crosslinking approach to determine at high resolution and transcriptome-wide the binding sites of cellular RBPs and miRNPs. The crosslinked sites are revealed by thymidine to cytidine transitions in the cDNAs prepared from immunopurified RNPs of 4-thiouridine-treated cells. We determined the binding sites and regulatory consequences for several intensely studied RBPs and miRNPs, including PUM2, QKI, IGF2BP1-3, AGO/EIF2C1-4 and TNRC6A-C. Our study revealed that these factors bind thousands of sites containing defined sequence motifs and have distinct preferences for exonic versus intronic or coding versus untranslated transcript regions. The precise mapping of binding sites across the transcriptome will be critical to the interpretation of the rapidly emerging data on genetic variation between individuals and how these variations contribute to complex genetic diseases.
LinkOut: [PMID: 20371350]
|
Experimental Support 2 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | HEK293 |
Disease | 253832.0 |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
"PAR-CLIP data was present in GSM714645. RNA binding protein: AGO2. Condition:completeT1
... - Kishore S; Jaskiewicz L; Burger L; Hausser et al., 2011, Nature methods. |
Article |
- Kishore S; Jaskiewicz L; Burger L; Hausser et al. - Nature methods, 2011
Cross-linking and immunoprecipitation (CLIP) is increasingly used to map transcriptome-wide binding sites of RNA-binding proteins. We developed a method for CLIP data analysis, and applied it to compare CLIP with photoactivatable ribonucleoside-enhanced CLIP (PAR-CLIP) and to uncover how differences in cross-linking and ribonuclease digestion affect the identified sites. We found only small differences in accuracies of these methods in identifying binding sites of HuR, which binds low-complexity sequences, and Argonaute 2, which has a complex binding specificity. We found that cross-link-induced mutations led to single-nucleotide resolution for both PAR-CLIP and CLIP. Our results confirm the expectation from original CLIP publications that RNA-binding proteins do not protect their binding sites sufficiently under the denaturing conditions used during the CLIP procedure, and we show that extensive digestion with sequence-specific RNases strongly biases the recovered binding sites. This bias can be substantially reduced by milder nuclease digestion conditions.
LinkOut: [PMID: 21572407]
|
Experimental Support 3 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | HEK293 |
Disease | 253832.0 |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
"PAR-CLIP data was present in GSM1065669. RNA binding protein: AGO1. Condition:4-thiouridine
... - Memczak S; Jens M; Elefsinioti A; Torti F; et al., 2013, Nature. |
Article |
- Memczak S; Jens M; Elefsinioti A; Torti F; et al. - Nature, 2013
Circular RNAs (circRNAs) in animals are an enigmatic class of RNA with unknown function. To explore circRNAs systematically, we sequenced and computationally analysed human, mouse and nematode RNA. We detected thousands of well-expressed, stable circRNAs, often showing tissue/developmental-stage-specific expression. Sequence analysis indicated important regulatory functions for circRNAs. We found that a human circRNA, antisense to the cerebellar degeneration-related protein 1 transcript (CDR1as), is densely bound by microRNA (miRNA) effector complexes and harbours 63 conserved binding sites for the ancient miRNA miR-7. Further analyses indicated that CDR1as functions to bind miR-7 in neuronal tissues. Human CDR1as expression in zebrafish impaired midbrain development, similar to knocking down miR-7, suggesting that CDR1as is a miRNA antagonist with a miRNA-binding capacity ten times higher than any other known transcript. Together, our data provide evidence that circRNAs form a large class of post-transcriptional regulators. Numerous circRNAs form by head-to-tail splicing of exons, suggesting previously unrecognized regulatory potential of coding sequences.
LinkOut: [PMID: 23446348]
|
Experimental Support 4 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | C8166 |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in GSM1462572. RNA binding protein: AGO2. Condition:C8166 NL4-3
... - Whisnant AW; Bogerd HP; Flores O; Ho P; et al., 2013, mBio. |
Article |
- Whisnant AW; Bogerd HP; Flores O; Ho P; et al. - mBio, 2013
UNLABELLED: The question of how HIV-1 interfaces with cellular microRNA (miRNA) biogenesis and effector mechanisms has been highly controversial. Here, we first used deep sequencing of small RNAs present in two different infected cell lines (TZM-bl and C8166) and two types of primary human cells (CD4(+) peripheral blood mononuclear cells [PBMCs] and macrophages) to unequivocally demonstrate that HIV-1 does not encode any viral miRNAs. Perhaps surprisingly, we also observed that infection of T cells by HIV-1 has only a modest effect on the expression of cellular miRNAs at early times after infection. Comprehensive analysis of miRNA binding to the HIV-1 genome using the photoactivatable ribonucleoside-induced cross-linking and immunoprecipitation (PAR-CLIP) technique revealed several binding sites for cellular miRNAs, a subset of which were shown to be capable of mediating miRNA-mediated repression of gene expression. However, the main finding from this analysis is that HIV-1 transcripts are largely refractory to miRNA binding, most probably due to extensive viral RNA secondary structure. Together, these data demonstrate that HIV-1 neither encodes viral miRNAs nor strongly influences cellular miRNA expression, at least early after infection, and imply that HIV-1 transcripts have evolved to avoid inhibition by preexisting cellular miRNAs by adopting extensive RNA secondary structures that occlude most potential miRNA binding sites. IMPORTANCE: MicroRNAs (miRNAs) are a ubiquitous class of small regulatory RNAs that serve as posttranscriptional regulators of gene expression. Previous work has suggested that HIV-1 might subvert the function of the cellular miRNA machinery by expressing viral miRNAs or by dramatically altering the level of cellular miRNA expression. Using very sensitive approaches, we now demonstrate that neither of these ideas is in fact correct. Moreover, HIV-1 transcripts appear to largely avoid regulation by cellular miRNAs by adopting an extensive RNA secondary structure that occludes the ability of cellular miRNAs to interact with viral mRNAs. Together, these data suggest that HIV-1, rather than seeking to control miRNA function in infected cells, has instead evolved a mechanism to become largely invisible to cellular miRNA effector mechanisms.
LinkOut: [PMID: 23592263]
|
Experimental Support 5 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | MCF7 |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in SRR1045082. RNA binding protein: AGO2. Condition:Untreated
... - Farazi TA; Ten Hoeve JJ; Brown M; et al., 2014, Genome biology. |
Article |
- Farazi TA; Ten Hoeve JJ; Brown M; et al. - Genome biology, 2014
BACKGROUND: Various microRNAs (miRNAs) are up- or downregulated in tumors. However, the repression of cognate miRNA targets responsible for the phenotypic effects of this dysregulation in patients remains largely unexplored. To define miRNA targets and associated pathways, together with their relationship to outcome in breast cancer, we integrated patient-paired miRNA-mRNA expression data with a set of validated miRNA targets and pathway inference. RESULTS: To generate a biochemically-validated set of miRNA-binding sites, we performed argonaute-2 photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (AGO2-PAR-CLIP) in MCF7 cells. We then defined putative miRNA-target interactions using a computational model, which ranked and selected additional TargetScan-predicted interactions based on features of our AGO2-PAR-CLIP binding-site data. We subselected modeled interactions according to the abundance of their constituent miRNA and mRNA transcripts in tumors, and we took advantage of the variability of miRNA expression within molecular subtypes to detect miRNA repression. Interestingly, our data suggest that miRNA families control subtype-specific pathways; for example, miR-17, miR-19a, miR-25, and miR-200b show high miRNA regulatory activity in the triple-negative, basal-like subtype, whereas miR-22 and miR-24 do so in the HER2 subtype. An independent dataset validated our findings for miR-17 and miR-25, and showed a correlation between the expression levels of miR-182 targets and overall patient survival. Pathway analysis associated miR-17, miR-19a, and miR-200b with leukocyte transendothelial migration. CONCLUSIONS: We combined PAR-CLIP data with patient expression data to predict regulatory miRNAs, revealing potential therapeutic targets and prognostic markers in breast cancer.
LinkOut: [PMID: 24398324]
|
CLIP-seq Support 1 for dataset GSM545216 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | HEK293 / miR-124 transfection |
Location of target site | ENST00000320220.9 | 3UTR | AACUUCAUUUUUUUCUUCACUAUUAUGCACUUUCAU |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 20371350 / GSE21578 |
CLIP-seq Viewer | Link |
CLIP-seq Support 2 for dataset GSM714645 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | HEK293 / completeT1, repB |
Location of target site | ENST00000320220.9 | 3UTR | AACUUCAUUUUUUUCUUCACUAUUAUGCACUUUCAUG |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 21572407 / GSE28865 |
CLIP-seq Viewer | Link |
CLIP-seq Support 3 for dataset GSM1065669 | |
---|---|
Method / RBP | PAR-CLIP / AGO1 |
Cell line / Condition | HEK293 / 4-thiouridine, ML_MM_8 |
Location of target site | ENST00000320220.9 | 3UTR | AACUUCAUUUUUUUCUUCACUAUUAUGCACUUUCAUG |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 23446348 / GSE43573 |
CLIP-seq Viewer | Link |
CLIP-seq Support 4 for dataset SRR1045082 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | MCF7 / Untreated |
Location of target site | ENST00000320220.9 | 3UTR | AACUUCAUUUUUUUCUUCACUAUUAUGCACUUUCAUG |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 24398324 / SRX388831 |
CLIP-seq Viewer | Link |
CLIP-seq Support 5 for dataset GSM1462572 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | C8166 / C8166 NL4-3 |
Location of target site | ENST00000320220.9 | 3UTR | AACUUCAUUUUUUUCUUCACUAUUAUGCACUUUCAUG |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 23592263 / GSE59944 |
CLIP-seq Viewer | Link |
MiRNA-Target Expression Profile | |||||||
---|---|---|---|---|---|---|---|
|
MiRNA-Target Expression Profile (TCGA) | |||||||
---|---|---|---|---|---|---|---|
|
40 hsa-miR-642b-5p Target Genes:
Functional analysis:
ID![]() |
Target | Description | Validation methods |
![]() |
![]() |
|||||||
Strong evidence | Less strong evidence | |||||||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||||
MIRT061567 | BTG2 | BTG anti-proliferation factor 2 | ![]() |
![]() |
2 | 4 | ||||||
MIRT131025 | ZDHHC5 | zinc finger DHHC-type containing 5 | ![]() |
![]() |
2 | 2 | ||||||
MIRT248297 | HOXC8 | homeobox C8 | ![]() |
![]() |
2 | 4 | ||||||
MIRT346049 | NPTX1 | neuronal pentraxin 1 | ![]() |
![]() |
2 | 2 | ||||||
MIRT443817 | SH3BP5L | SH3 binding domain protein 5 like | ![]() |
![]() |
2 | 2 | ||||||
MIRT453003 | CCDC115 | coiled-coil domain containing 115 | ![]() |
![]() |
2 | 16 | ||||||
MIRT486363 | SORCS2 | sortilin related VPS10 domain containing receptor 2 | ![]() |
![]() |
2 | 4 | ||||||
MIRT487496 | IL1F10 | interleukin 1 family member 10 | ![]() |
![]() |
2 | 4 | ||||||
MIRT489593 | ZDHHC20 | zinc finger DHHC-type containing 20 | ![]() |
![]() |
2 | 10 | ||||||
MIRT494875 | ZNF865 | zinc finger protein 865 | ![]() |
![]() |
2 | 2 | ||||||
MIRT500352 | ZNF385A | zinc finger protein 385A | ![]() |
![]() |
2 | 2 | ||||||
MIRT533000 | ZFHX3 | zinc finger homeobox 3 | ![]() |
![]() |
2 | 2 | ||||||
MIRT534979 | PSAT1 | phosphoserine aminotransferase 1 | ![]() |
![]() |
2 | 4 | ||||||
MIRT539420 | ADAT2 | adenosine deaminase, tRNA specific 2 | ![]() |
![]() |
2 | 2 | ||||||
MIRT546832 | RAP1B | RAP1B, member of RAS oncogene family | ![]() |
![]() |
2 | 2 | ||||||
MIRT552046 | ALG1 | ALG1, chitobiosyldiphosphodolichol beta-mannosyltransferase | ![]() |
![]() |
2 | 2 | ||||||
MIRT562034 | KRAS | KRAS proto-oncogene, GTPase | ![]() |
![]() |
2 | 2 | ||||||
MIRT565591 | SLC35G1 | solute carrier family 35 member G1 | ![]() |
![]() |
2 | 2 | ||||||
MIRT569809 | XKR4 | XK related 4 | ![]() |
![]() |
2 | 2 | ||||||
MIRT573407 | ARL6IP1 | ADP ribosylation factor like GTPase 6 interacting protein 1 | ![]() |
![]() |
2 | 2 | ||||||
MIRT615258 | DPF2 | double PHD fingers 2 | ![]() |
![]() |
2 | 2 | ||||||
MIRT616320 | CACNA1A | calcium voltage-gated channel subunit alpha1 A | ![]() |
![]() |
2 | 2 | ||||||
MIRT617607 | SHOX2 | short stature homeobox 2 | ![]() |
![]() |
2 | 2 | ||||||
MIRT642596 | C14orf180 | chromosome 14 open reading frame 180 | ![]() |
![]() |
2 | 2 | ||||||
MIRT643808 | ABCC12 | ATP binding cassette subfamily C member 12 | ![]() |
![]() |
2 | 2 | ||||||
MIRT646202 | DUSP10 | dual specificity phosphatase 10 | ![]() |
![]() |
2 | 2 | ||||||
MIRT648791 | VPS8 | VPS8, CORVET complex subunit | ![]() |
![]() |
2 | 2 | ||||||
MIRT650822 | LZTR1 | leucine zipper like transcription regulator 1 | ![]() |
![]() |
2 | 2 | ||||||
MIRT653992 | SECISBP2 | SECIS binding protein 2 | ![]() |
![]() |
2 | 2 | ||||||
MIRT655452 | PALM2 | paralemmin 2 | ![]() |
![]() |
2 | 2 | ||||||
MIRT660556 | ARF1 | ADP ribosylation factor 1 | ![]() |
![]() |
2 | 2 | ||||||
MIRT702698 | IPO9 | importin 9 | ![]() |
![]() |
2 | 2 | ||||||
MIRT708102 | IGF2BP1 | insulin like growth factor 2 mRNA binding protein 1 | ![]() |
![]() |
2 | 2 | ||||||
MIRT708674 | LY6G6D | lymphocyte antigen 6 family member G6D | ![]() |
![]() |
2 | 2 | ||||||
MIRT709773 | LY6G6F | lymphocyte antigen 6 family member G6F | ![]() |
![]() |
2 | 2 | ||||||
MIRT712075 | WDR37 | WD repeat domain 37 | ![]() |
![]() |
2 | 2 | ||||||
MIRT713643 | NCS1 | neuronal calcium sensor 1 | ![]() |
![]() |
2 | 2 | ||||||
MIRT717999 | ZNF79 | zinc finger protein 79 | ![]() |
![]() |
2 | 2 | ||||||
MIRT718932 | TRIM66 | tripartite motif containing 66 | ![]() |
![]() |
2 | 2 | ||||||
MIRT719694 | STX6 | syntaxin 6 | ![]() |
![]() |
2 | 2 |
miRNA-Drug Resistance Associations | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|