pre-miRNA Information | |
---|---|
pre-miRNA | hsa-mir-4677 |
Genomic Coordinates | chr1: 243346176 - 243346255 |
Description | Homo sapiens miR-4677 stem-loop |
Comment | None |
RNA Secondary Structure |
Mature miRNA Information | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mature miRNA | hsa-miR-4677-3p | ||||||||||||
Sequence | 50| UCUGUGAGACCAAAGAACUACU |71 | ||||||||||||
Evidence | Experimental | ||||||||||||
Experiments | Illumina | ||||||||||||
SNPs in miRNA |
|
||||||||||||
Putative Targets |
miRNA Expression profile | |
---|---|
miRNAs in Extracellular Vesicles |
|
Circulating MicroRNA Expression Profiling |
Gene Information | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gene Symbol | APC2 | ||||||||||||||||||||
Synonyms | APCL | ||||||||||||||||||||
Description | APC2, WNT signaling pathway regulator | ||||||||||||||||||||
Transcript | NM_005883 | ||||||||||||||||||||
Expression | |||||||||||||||||||||
Putative miRNA Targets on APC2 | |||||||||||||||||||||
3'UTR of APC2 (miRNA target sites are highlighted) |
>APC2|NM_005883|3'UTR 1 TGGCCTAGGCCGGCCTTCTGGAACGTTCTCTCCCGGCCCTGCGGCGCGGTCTGGCTGCCCCATGGGCCTGCGCTGTAGAC 81 GTCCCCCATAGGTCGCCCCAGGGCCTCTGCCCACCCGAGCCCCACCACTCTCAGAACCCCCGCCCAGCGCACGGCGACCT 161 CGCGCCTCACCGGAAGACCTTGCCTCTGTGCCGCGGAGGTCCAGGAGGAAACGGGGCGGCCGCTAGGCCTCAAGTCCCGA 241 CCGTGGAGCGCTGGCAAGGGCGTCCTGGCCCAGCCCTGAGCGCGCGGCCCTTCCCCTGTCGGAAGCCGTTGCTTGACCCC 321 GGGCGAGGGAGGCGGTAGCCTCCGGGTCCGGGTCTGGGTCTGGGTCCGCTGCTTCGCAGGGACAGCGCTGGGGAGGTGAC 401 GGCGCCCGCCGCAGGTGGGGCGAGGCTGGGGGAGGGCGGCGCCGCGGCGGGCCTGCCAGCTGGGGGCCTTTGCGGCGCGC 481 AGGGGCGAAGCCTGTAATCACTGCAGCCGCCGGTAATTCGCTAATGAGGGCTTTGCAGGGATTGTTTTCATTCTCAGCCC 561 CAGCTGTGGGAGTGCGGGTGGGGGTGTGGCCGAGCCCCGGCAGGAAGCCCCGCCCAGACGGTGTTCAGGGAACCCGGAGC 641 CCAAGCGCTCCGGCGGAGCCCAAAAGGGTGGGGGTGGGAGGGGCAGAGGCCAACGGATCCCCCTGCCTGTCGCACCCCTT 721 GGCGGGAGACGGGAAGGCAGCGGGCTGCGTACGATGGGACCCTGGTGCAGACGCCGGGCCGGCTGACATTTGGACCCCAT 801 CCCAGAGGAGATGCTGGCTACCAGCTGGGGCGACCCCAAGGGTCGCTGGAGTCAGTATCGGCCCGGCGCAGCCGCGGCGG 881 GCGAGGCCAATGGAAAGGAGACTGAGGGGAGTCCCGGCAGTGAGCCCGAGGCCCTGGGACCTGGAGCCCGCGCTGGCCTC 961 TCCCCAGCGGAGCCTGCACGTTACGGAGACCATCACATGTGGGCGTGGTCAGTGCCCAGGACCGCACCGCTGCTCATCTT 1041 GTCCCTTTTCAATTCCCTTCTGGTTCATGATGCATAAAGCGCTAGGCCCTAGAACTCCAGAAACAGCACAGCTGGGGCGG 1121 GGACCCAGCCTTGCCCTCCACCCGAGGCTCTGGGACAAGGCGGGAGGTTCGGGGGCCTTCCGGCAGGTGAACGCAGGGCT 1201 GGAGAGTATTTGGTGCCAGATGAGGTGAAAGCTTATAGAAGGGCCTGAGGGGCTCGGCTGCCTCATCCCCTGGCGGGGGA 1281 GGCTGGGAGCTGGGCCTCCTGCGTGGGGTGGGACTCGCAGGGGCCGGGTCTCCGTGACTGGGGCAACGCCTCGTCCTGCA 1361 GAGGGAGCCGACGACCTCTTTTCTGCAGAAAAGCTCCAGCAGGCGCTGCCTTCACCCACGGATCTGCCCAGGCTGAAGGC 1441 ACACGCTCAATGCCCCACGTGCCTTCTCCAGGAGGAACGAAGCAGGGTTTGAGGGTTGGGTGGATGGAGCTCAGAAGGAA 1521 ACCCCAGCCCCACCACGGATGACACCATCCCTCCCGTCCCATCCCCAGCATGGGCAAGGCCAGCCTTTCTGGCAGAAGGA 1601 GCTGTCCTCAACTCAGGGCCGCTGTGAGCAAAGCTGACCCCAGCCCCCACCCCCAGTTAACACTGCTGCTTCTCTGAATG 1681 CATGTCACGCTGCACCCCATGCTCCGGGCCCACACCCTGCAGGACAAGGAGCTCCAGACAGGACGTCCATAAGTCACCGA 1761 GGTGTGCCACCCAGCAGGTGCTGGAGGTGCCCAATGCTCCCTCCTAGGACCTCGCAGCCAGGCAAGGCTGTCAGGTTGTT 1841 TTGGGGGAAGAGGGGGTCATGGATGGCTGAGCAGAGAGCGGGGAAAATGCAGGCTGAGTGGGGCGACCTCCTGCCTGCCA 1921 GGAGCCCCCTTTCAGGACACAGCGGGGGTCTCACACTTGCTGTCCCCATCCATGGCCCGAGGGGGAACCTGGTGGTCTCT 2001 TCTGAGCTTTTGGACTTGGGGATGCCAAACACGTGCTCACCCTCACACTCGCCCCGGCCCGCTGCGCCCCTAATTGCCAA 2081 AGGGTAGGGAAATGGCGAAGCCAGCCACCAGGTCGCTGGTGACAGGGCCAGGGTTATGCAGGAAGGTGGTGCGGCATTGC 2161 CTTCCACATATGTAAGTCTCTGGGCGGCGCCCTCCCAGCTCCCTGCCTCTGTTTCCCCATGTGGGCCGTGGGGAACTCCC 2241 AGAGCTACCTCTTGGGGGAGCGTGGTGGCAGCGATGATGGGGAGACGCCTGGAAGCTCACAGAACTTGGGTCTGGCTGGC 2321 TCCTGCCCGTGACGCCTTGCCCAGCAGCAAGGTGCGCAACATGGCTGCCAGCCCCGCCTCCCACCCCCACCCCGAGTCCT 2401 GAGCTCACTTTCGCCTTCTCCATCCCCTGCCGTGGGGGCCACAGCCACACCTCACCGCCCAGTCCAGCTGTCTCCAGAAG 2481 GGGACAGGCAGTCCGCGGTCTCTGGACAATCAACTCAAGGTACGCCCACTGCAAGGCCTCCCTCCCACCGCGGCCCCTGC 2561 CTGGCCACCTGGCCTCTCTGCACCAGGGTGACAAGGGGTCCTCGTCTGCCCCCCAATGCTCCAGGGCCAGTCCTAAGGAG 2641 CTGAGGGTCTGAGGACGCAGGGAGGGTGGAGGTGTCCTGAGGCTGATGGACAGTGACCGCCACTGGCCCCCAACATGACC 2721 ACACGTGGGTGCTGAACTCGGGGCGCCGTGCCCACCGGCATGGTCCTCCCGAGCTCCGACAGCATTACCTCACCCGGCCC 2801 CATCTGTTGCCCCGGTCCAGCCCTGATGGCGCGCGCCTGGTCTGTCTGATTCCCCTAGCCGCCACCCCACGTTTCTGTAC 2881 CGGGTCTCTGCAGTGTTAAACGGACGTGTAAATAGTGGTAAATAGTGAAAGCCTGTCCTTCCCTAAATGTAAAGCCATCT 2961 GTCCGGCGTAAGGACGACACCGTCAGCTGTCCGACTCGCACACATTTAATAAACTGAGCTCTTGCATTGCC Target sites
Provided by authors
Predicted by miRanda
DRVs
SNPs
DRVs & SNPs
|
||||||||||||||||||||
miRNA-target interactions (Predicted by miRanda) |
|
||||||||||||||||||||
DRVs in gene 3'UTRs | |||||||||||||||||||||
SNPs in gene 3'UTRs |
Experimental Support 1 for Functional miRNA-Target Interaction | |||||||
---|---|---|---|---|---|---|---|
miRNA:Target | ---- | ||||||
Validation Method |
|
||||||
Conditions | HEK293 | ||||||
Disease | 10297.0 | ||||||
Location of target site | 3'UTR | ||||||
Tools used in this research | TargetScan , miRTarCLIP , Piranha | ||||||
Original Description (Extracted from the article) |
...
"PAR-CLIP data was present in GSM714645. RNA binding protein: AGO2. Condition:completeT1
... - Kishore S; Jaskiewicz L; Burger L; Hausser et al., 2011, Nature methods. |
||||||
miRNA-target interactions (Provided by authors) |
|
||||||
Article |
- Kishore S; Jaskiewicz L; Burger L; Hausser et al. - Nature methods, 2011
Cross-linking and immunoprecipitation (CLIP) is increasingly used to map transcriptome-wide binding sites of RNA-binding proteins. We developed a method for CLIP data analysis, and applied it to compare CLIP with photoactivatable ribonucleoside-enhanced CLIP (PAR-CLIP) and to uncover how differences in cross-linking and ribonuclease digestion affect the identified sites. We found only small differences in accuracies of these methods in identifying binding sites of HuR, which binds low-complexity sequences, and Argonaute 2, which has a complex binding specificity. We found that cross-link-induced mutations led to single-nucleotide resolution for both PAR-CLIP and CLIP. Our results confirm the expectation from original CLIP publications that RNA-binding proteins do not protect their binding sites sufficiently under the denaturing conditions used during the CLIP procedure, and we show that extensive digestion with sequence-specific RNases strongly biases the recovered binding sites. This bias can be substantially reduced by milder nuclease digestion conditions.
LinkOut: [PMID: 21572407]
|
Experimental Support 2 for Functional miRNA-Target Interaction | |||||||
---|---|---|---|---|---|---|---|
miRNA:Target | ---- | ||||||
Validation Method |
|
||||||
Conditions | hESCs (WA-09) | ||||||
Disease | 10297.0 | ||||||
Location of target site | 3'UTR | ||||||
Tools used in this research | TargetScan , miRTarCLIP , Piranha | ||||||
Original Description (Extracted from the article) |
...
"PAR-CLIP data was present in SRR359787. RNA binding protein: AGO2. Condition:4-thiouridine
... - Lipchina I; Elkabetz Y; Hafner M; Sheridan et al., 2011, Genes & development. |
||||||
miRNA-target interactions (Provided by authors) |
|
||||||
Article |
- Lipchina I; Elkabetz Y; Hafner M; Sheridan et al. - Genes & development, 2011
MicroRNAs are important regulators in many cellular processes, including stem cell self-renewal. Recent studies demonstrated their function as pluripotency factors with the capacity for somatic cell reprogramming. However, their role in human embryonic stem (ES) cells (hESCs) remains poorly understood, partially due to the lack of genome-wide strategies to identify their targets. Here, we performed comprehensive microRNA profiling in hESCs and in purified neural and mesenchymal derivatives. Using a combination of AGO cross-linking and microRNA perturbation experiments, together with computational prediction, we identified the targets of the miR-302/367 cluster, the most abundant microRNAs in hESCs. Functional studies identified novel roles of miR-302/367 in maintaining pluripotency and regulating hESC differentiation. We show that in addition to its role in TGF-beta signaling, miR-302/367 promotes bone morphogenetic protein (BMP) signaling by targeting BMP inhibitors TOB2, DAZAP2, and SLAIN1. This study broadens our understanding of microRNA function in hESCs and is a valuable resource for future studies in this area.
LinkOut: [PMID: 22012620]
|
Experimental Support 3 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | C8166 |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in GSM1462572. RNA binding protein: AGO2. Condition:C8166 NL4-3
... - Whisnant AW; Bogerd HP; Flores O; Ho P; et al., 2013, mBio. |
Article |
- Whisnant AW; Bogerd HP; Flores O; Ho P; et al. - mBio, 2013
UNLABELLED: The question of how HIV-1 interfaces with cellular microRNA (miRNA) biogenesis and effector mechanisms has been highly controversial. Here, we first used deep sequencing of small RNAs present in two different infected cell lines (TZM-bl and C8166) and two types of primary human cells (CD4(+) peripheral blood mononuclear cells [PBMCs] and macrophages) to unequivocally demonstrate that HIV-1 does not encode any viral miRNAs. Perhaps surprisingly, we also observed that infection of T cells by HIV-1 has only a modest effect on the expression of cellular miRNAs at early times after infection. Comprehensive analysis of miRNA binding to the HIV-1 genome using the photoactivatable ribonucleoside-induced cross-linking and immunoprecipitation (PAR-CLIP) technique revealed several binding sites for cellular miRNAs, a subset of which were shown to be capable of mediating miRNA-mediated repression of gene expression. However, the main finding from this analysis is that HIV-1 transcripts are largely refractory to miRNA binding, most probably due to extensive viral RNA secondary structure. Together, these data demonstrate that HIV-1 neither encodes viral miRNAs nor strongly influences cellular miRNA expression, at least early after infection, and imply that HIV-1 transcripts have evolved to avoid inhibition by preexisting cellular miRNAs by adopting extensive RNA secondary structures that occlude most potential miRNA binding sites. IMPORTANCE: MicroRNAs (miRNAs) are a ubiquitous class of small regulatory RNAs that serve as posttranscriptional regulators of gene expression. Previous work has suggested that HIV-1 might subvert the function of the cellular miRNA machinery by expressing viral miRNAs or by dramatically altering the level of cellular miRNA expression. Using very sensitive approaches, we now demonstrate that neither of these ideas is in fact correct. Moreover, HIV-1 transcripts appear to largely avoid regulation by cellular miRNAs by adopting an extensive RNA secondary structure that occludes the ability of cellular miRNAs to interact with viral mRNAs. Together, these data suggest that HIV-1, rather than seeking to control miRNA function in infected cells, has instead evolved a mechanism to become largely invisible to cellular miRNA effector mechanisms.
LinkOut: [PMID: 23592263]
|
Experimental Support 4 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | HCT116 |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in ERX177606. RNA binding protein: AGO2. Condition:KO_V_AGO_CLIP_2_8
PAR-CLIP data was present in ERX177618. RNA binding protein: AGO2. Condition:KO_V_AGO_CLIP_3_8
PAR-CLIP data was present in ERX177630. RNA binding protein: AGO2. Condition:KO_V_AGO_CLIP_4_8
PAR-CLIP data was present in ERX177605. RNA binding protein: AGO2. Condition:KO_D_AGO_CLIP_2_7
PAR-CLIP data was present in ERX177629. RNA binding protein: AGO2. Condition:KO_D_AGO_CLIP_4_7
... - Krell J; Stebbing J; Carissimi C; Dabrowska et al., 2016, Genome research. |
Article |
- Krell J; Stebbing J; Carissimi C; Dabrowska et al. - Genome research, 2016
DNA damage activates TP53-regulated surveillance mechanisms that are crucial in suppressing tumorigenesis. TP53 orchestrates these responses directly by transcriptionally modulating genes, including microRNAs (miRNAs), and by regulating miRNA biogenesis through interacting with the DROSHA complex. However, whether the association between miRNAs and AGO2 is regulated following DNA damage is not yet known. Here, we show that, following DNA damage, TP53 interacts with AGO2 to induce or reduce AGO2's association of a subset of miRNAs, including multiple let-7 family members. Furthermore, we show that specific mutations in TP53 decrease rather than increase the association of let-7 family miRNAs, reducing their activity without preventing TP53 from interacting with AGO2. This is consistent with the oncogenic properties of these mutants. Using AGO2 RIP-seq and PAR-CLIP-seq, we show that the DNA damage-induced increase in binding of let-7 family members to the RISC complex is functional. We unambiguously determine the global miRNA-mRNA interaction networks involved in the DNA damage response, validating them through the identification of miRNA-target chimeras formed by endogenous ligation reactions. We find that the target complementary region of the let-7 seed tends to have highly fixed positions and more variable ones. Additionally, we observe that miRNAs, whose cellular abundance or differential association with AGO2 is regulated by TP53, are involved in an intricate network of regulatory feedback and feedforward circuits. TP53-mediated regulation of AGO2-miRNA interaction represents a new mechanism of miRNA regulation in carcinogenesis.
LinkOut: [PMID: 26701625]
|
Experimental Support 5 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | Prostate Tissue |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in SRX1760639. RNA binding protein: AGO2. Condition:AGO-CLIP-LNCaP-MDV_A
PAR-CLIP data was present in SRX1760591. RNA binding protein: AGO2. Condition:AGO-CLIP-LNCaP_B
... - Hamilton MP; Rajapakshe KI; Bader DA; Cerne et al., 2016, Neoplasia (New York, N.Y.). |
Article |
- Hamilton MP; Rajapakshe KI; Bader DA; Cerne et al. - Neoplasia (New York, N.Y.), 2016
MicroRNA (miRNA) deregulation in prostate cancer (PCa) contributes to PCa initiation and metastatic progression. To comprehensively define the cancer-associated changes in miRNA targeting and function in commonly studied models of PCa, we performed photoactivatable ribonucleoside-enhanced cross-linking immunoprecipitation of the Argonaute protein in a panel of PCa cell lines modeling different stages of PCa progression. Using this comprehensive catalogue of miRNA targets, we analyzed miRNA targeting on known drivers of PCa and examined tissue-specific and stage-specific pathway targeting by miRNAs. We found that androgen receptor is the most frequently targeted PCa oncogene and that miR-148a targets the largest number of known PCa drivers. Globally, tissue-specific and stage-specific changes in miRNA targeting are driven by homeostatic response to active oncogenic pathways. Our findings indicate that, even in advanced PCa, the miRNA pool adapts to regulate continuing alterations in the cancer genome to balance oncogenic molecular changes. These findings are important because they are the first to globally characterize miRNA changes in PCa and demonstrate how the miRNA target spectrum responds to staged tumorigenesis.
LinkOut: [PMID: 27292025]
|
CLIP-seq Support 1 for dataset GSM714645 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | HEK293 / completeT1, repB |
Location of target site | ENST00000233607.2 | 3UTR | AACUUGGGUCUGGCUGGCU |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 21572407 / GSE28865 |
CLIP-seq Viewer | Link |
CLIP-seq Support 2 for dataset SRR359787 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | hESCs (WA-09) / 4-thiouridine, RNase T1 |
Location of target site | ENST00000233607.2 | 3UTR | AACUUGGGUCUGGCUGG |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 22012620 / SRX103431 |
CLIP-seq Viewer | Link |
CLIP-seq Support 3 for dataset GSM1462572 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | C8166 / C8166 NL4-3 |
Location of target site | ENST00000233607.2 | 3UTR | AACUUGGGUCUGGCUGGC |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 23592263 / GSE59944 |
CLIP-seq Viewer | Link |
MiRNA-Target Expression Profile | |||||||
---|---|---|---|---|---|---|---|
|
MiRNA-Target Expression Profile (TCGA) | |||||||
---|---|---|---|---|---|---|---|
|
61 hsa-miR-4677-3p Target Genes:
Functional analysis:
ID | Target | Description | Validation methods | |||||||||
Strong evidence | Less strong evidence | |||||||||||
MIRT277530 | HSP90AA1 | heat shock protein 90 alpha family class A member 1 | 2 | 2 | ||||||||
MIRT296646 | RPS21 | ribosomal protein S21 | 2 | 4 | ||||||||
MIRT306961 | THRB | thyroid hormone receptor beta | 2 | 2 | ||||||||
MIRT439091 | MYC | MYC proto-oncogene, bHLH transcription factor | 0 | 1 | ||||||||
MIRT443953 | LRIT3 | leucine rich repeat, Ig-like and transmembrane domains 3 | 2 | 2 | ||||||||
MIRT445487 | KLF12 | Kruppel like factor 12 | 2 | 2 | ||||||||
MIRT446637 | SDC3 | syndecan 3 | 2 | 2 | ||||||||
MIRT448594 | PCP4L1 | Purkinje cell protein 4 like 1 | 2 | 2 | ||||||||
MIRT449822 | FNBP1 | formin binding protein 1 | 2 | 2 | ||||||||
MIRT450422 | BCL2L14 | BCL2 like 14 | 2 | 2 | ||||||||
MIRT454907 | SEPT8 | septin 8 | 2 | 17 | ||||||||
MIRT466442 | TFAM | transcription factor A, mitochondrial | 2 | 6 | ||||||||
MIRT474198 | LEPRE1 | prolyl 3-hydroxylase 1 | 1 | 1 | ||||||||
MIRT474486 | KLHDC8B | kelch domain containing 8B | 2 | 2 | ||||||||
MIRT474900 | KCTD21 | potassium channel tetramerization domain containing 21 | 2 | 2 | ||||||||
MIRT477670 | EFHD2 | EF-hand domain family member D2 | 2 | 2 | ||||||||
MIRT483912 | GNB1L | G protein subunit beta 1 like | 2 | 2 | ||||||||
MIRT484163 | FAM71B | family with sequence similarity 71 member B | 2 | 2 | ||||||||
MIRT487565 | LOXL2 | lysyl oxidase like 2 | 2 | 2 | ||||||||
MIRT489678 | CYP1A1 | cytochrome P450 family 1 subfamily A member 1 | 2 | 2 | ||||||||
MIRT491482 | APC2 | APC2, WNT signaling pathway regulator | 2 | 6 | ||||||||
MIRT492745 | PER1 | period circadian clock 1 | 2 | 10 | ||||||||
MIRT499212 | CHRDL1 | chordin like 1 | 2 | 4 | ||||||||
MIRT501197 | SUMO1 | small ubiquitin-like modifier 1 | 2 | 2 | ||||||||
MIRT522622 | MAP7D1 | MAP7 domain containing 1 | 2 | 4 | ||||||||
MIRT523971 | DVL3 | dishevelled segment polarity protein 3 | 2 | 2 | ||||||||
MIRT541017 | WIPI2 | WD repeat domain, phosphoinositide interacting 2 | 2 | 2 | ||||||||
MIRT554741 | RHOC | ras homolog family member C | 2 | 2 | ||||||||
MIRT558910 | CBX5 | chromobox 5 | 2 | 2 | ||||||||
MIRT561466 | TCEB3 | elongin A | 2 | 2 | ||||||||
MIRT564039 | BIRC5 | baculoviral IAP repeat containing 5 | 2 | 2 | ||||||||
MIRT564508 | DUSP3 | dual specificity phosphatase 3 | 2 | 2 | ||||||||
MIRT566854 | LRRC58 | leucine rich repeat containing 58 | 2 | 2 | ||||||||
MIRT574110 | SPINT2 | serine peptidase inhibitor, Kunitz type 2 | 2 | 2 | ||||||||
MIRT611056 | DAB2 | DAB2, clathrin adaptor protein | 2 | 2 | ||||||||
MIRT615578 | NCS1 | neuronal calcium sensor 1 | 2 | 2 | ||||||||
MIRT615742 | EIF4EBP1 | eukaryotic translation initiation factor 4E binding protein 1 | 2 | 2 | ||||||||
MIRT626785 | IL18RAP | interleukin 18 receptor accessory protein | 2 | 2 | ||||||||
MIRT627338 | TTLL7 | tubulin tyrosine ligase like 7 | 2 | 2 | ||||||||
MIRT629039 | KLLN | killin, p53-regulated DNA replication inhibitor | 2 | 2 | ||||||||
MIRT637643 | RASGRP1 | RAS guanyl releasing protein 1 | 2 | 2 | ||||||||
MIRT641769 | ZNF207 | zinc finger protein 207 | 2 | 2 | ||||||||
MIRT645719 | PTPRF | protein tyrosine phosphatase, receptor type F | 2 | 2 | ||||||||
MIRT652155 | TRIM71 | tripartite motif containing 71 | 2 | 2 | ||||||||
MIRT659216 | CXXC5 | CXXC finger protein 5 | 2 | 2 | ||||||||
MIRT661995 | EFTUD2 | elongation factor Tu GTP binding domain containing 2 | 2 | 2 | ||||||||
MIRT662711 | C10orf111 | chromosome 10 open reading frame 111 | 2 | 4 | ||||||||
MIRT663216 | ZNF277 | zinc finger protein 277 | 2 | 2 | ||||||||
MIRT668715 | DIP2C | disco interacting protein 2 homolog C | 2 | 2 | ||||||||
MIRT675132 | FSD2 | fibronectin type III and SPRY domain containing 2 | 2 | 2 | ||||||||
MIRT686180 | ZNHIT6 | zinc finger HIT-type containing 6 | 2 | 2 | ||||||||
MIRT695993 | SNX19 | sorting nexin 19 | 2 | 2 | ||||||||
MIRT702346 | KLHL7 | kelch like family member 7 | 2 | 2 | ||||||||
MIRT702702 | IPO9 | importin 9 | 2 | 2 | ||||||||
MIRT708232 | PPP1R26 | protein phosphatase 1 regulatory subunit 26 | 2 | 2 | ||||||||
MIRT713311 | SNRNP25 | small nuclear ribonucleoprotein U11/U12 subunit 25 | 2 | 2 | ||||||||
MIRT713528 | PAFAH2 | platelet activating factor acetylhydrolase 2 | 2 | 2 | ||||||||
MIRT714651 | FSTL1 | follistatin like 1 | 2 | 2 | ||||||||
MIRT715549 | FPGS | folylpolyglutamate synthase | 2 | 2 | ||||||||
MIRT724289 | KCNMB1 | potassium calcium-activated channel subfamily M regulatory beta subunit 1 | 2 | 2 | ||||||||
MIRT724433 | TFCP2L1 | transcription factor CP2 like 1 | 2 | 2 |
miRNA-Drug Resistance Associations | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|