pre-miRNA Information | |
---|---|
pre-miRNA | hsa-mir-4776-1 |
Genomic Coordinates | chr2: 212926257 - 212926336 |
Description | Homo sapiens miR-4776-1 stem-loop |
Comment | None |
RNA Secondary Structure | |
pre-miRNA | hsa-mir-4776-2 |
Genomic Coordinates | chr2: 212926257 - 212926336 |
Description | Homo sapiens miR-4776-2 stem-loop |
Comment | None |
RNA Secondary Structure |
Mature miRNA Information | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mature miRNA | hsa-miR-4776-3p | ||||||||||||||||||||||||||||||
Sequence | 54| CUUGCCAUCCUGGUCCACUGCAU |76 | ||||||||||||||||||||||||||||||
Evidence | Experimental | ||||||||||||||||||||||||||||||
Experiments | Illumina | ||||||||||||||||||||||||||||||
SNPs in miRNA |
|
||||||||||||||||||||||||||||||
Putative Targets |
Gene Information | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gene Symbol | CTBP1 | ||||||||||||||||||||
Synonyms | BARS | ||||||||||||||||||||
Description | C-terminal binding protein 1 | ||||||||||||||||||||
Transcript | NM_001012614 | ||||||||||||||||||||
Other Transcripts | NM_001328 | ||||||||||||||||||||
Expression | |||||||||||||||||||||
Putative miRNA Targets on CTBP1 | |||||||||||||||||||||
3'UTR of CTBP1 (miRNA target sites are highlighted) |
>CTBP1|NM_001012614|3'UTR 1 CCCGGGAGGAGCTCTCCAGCCTCGGCGCCTGGGCAGAGGGCCCGGAAACCCTCGGACCAGAGTGTGTGGAGGAGGCATCT 81 GTGTGGTGGCCCTGGCACTGCAGAGACTGGTCCGGGCTGTCAGGAGGCGGGAGGGGGCAGCGCTGGGCCTCGTGTCGCTT 161 GTCGTCGTCCGTCCTGTGGGCGCTCTGCCCTGTGTCCTTCGCGTTCCTCGTTAAGCAGAAGAAGTCAGTAGTTATTCTCC 241 CATGAACGTTCTTGTCTGTGTACAGTTTTTAGAACATTACAAAGGATCTGTTTGCTTAGCTGTCAACAAAAAGAAAACCT 321 GAAGGAGCATTTGGAAGTCAATTTGAGGTTTTTTTTTTTGTTTTTTTTTTTTTTGTATGTTGGAACGTGCCCCAGAATGA 401 GGCAGTTGGCAAACTTCTCAGGACAATGAATCCTTCCCGTTTTTCTTTTTATGCCACACAGTGCATTGTTTTTTCTACCT 481 GCTTGTCTTATTTTTAGAATAATTTAGAAAAACAAAACAAAGGCTGTTTTTCCTAATTTTGGCATGAACCCCCCCTTGTT 561 CCAAATGAAGACGGCATCACGAAGCAGCTCCAAAAGGAAAAGCTTGGGCGGTGCCCAGCGTGCCCGCTGCCCATCGACGT 641 CTGTCCTGGGGACGTGGAGGGTGGCAGCGTCCCCGCCTGCACCAGTGCCGTCCTGCTGATGTGGTAGGCTAGCAATATTT 721 TGGTTAAAATCATGTTTGTGACTGTAACCATTTGTATGAATTATTTTAAAGAAATAAAAATCCTGGAAAGAGCCAGCGTG Target sites
Provided by authors
Predicted by miRanda
DRVs
SNPs
DRVs & SNPs
|
||||||||||||||||||||
miRNA-target interactions (Predicted by miRanda) |
|
||||||||||||||||||||
DRVs in gene 3'UTRs | |||||||||||||||||||||
SNPs in gene 3'UTRs |
Experimental Support 1 for Functional miRNA-Target Interaction | |||||||
---|---|---|---|---|---|---|---|
miRNA:Target | ---- | ||||||
Validation Method |
|
||||||
Conditions | HEK293 | ||||||
Disease | 1487.0 | ||||||
Location of target site | 3'UTR | ||||||
Tools used in this research | TargetScan , miRTarCLIP , Piranha | ||||||
Original Description (Extracted from the article) |
...
"PAR-CLIP data was present in GSM714644. RNA binding protein: AGO2. Condition:completeT1
... - Kishore S; Jaskiewicz L; Burger L; Hausser et al., 2011, Nature methods. |
||||||
miRNA-target interactions (Provided by authors) |
|
||||||
Article |
- Kishore S; Jaskiewicz L; Burger L; Hausser et al. - Nature methods, 2011
Cross-linking and immunoprecipitation (CLIP) is increasingly used to map transcriptome-wide binding sites of RNA-binding proteins. We developed a method for CLIP data analysis, and applied it to compare CLIP with photoactivatable ribonucleoside-enhanced CLIP (PAR-CLIP) and to uncover how differences in cross-linking and ribonuclease digestion affect the identified sites. We found only small differences in accuracies of these methods in identifying binding sites of HuR, which binds low-complexity sequences, and Argonaute 2, which has a complex binding specificity. We found that cross-link-induced mutations led to single-nucleotide resolution for both PAR-CLIP and CLIP. Our results confirm the expectation from original CLIP publications that RNA-binding proteins do not protect their binding sites sufficiently under the denaturing conditions used during the CLIP procedure, and we show that extensive digestion with sequence-specific RNases strongly biases the recovered binding sites. This bias can be substantially reduced by milder nuclease digestion conditions.
LinkOut: [PMID: 21572407]
|
Experimental Support 2 for Functional miRNA-Target Interaction | |||||||
---|---|---|---|---|---|---|---|
miRNA:Target | ---- | ||||||
Validation Method |
|
||||||
Conditions | MCF7 | ||||||
Location of target site | 3'UTR | ||||||
Tools used in this research | TargetScan , miRTarCLIP , Piranha | ||||||
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in SRR1045082. RNA binding protein: AGO2. Condition:Untreated
... - Farazi TA; Ten Hoeve JJ; Brown M; et al., 2014, Genome biology. |
||||||
miRNA-target interactions (Provided by authors) |
|
||||||
Article |
- Farazi TA; Ten Hoeve JJ; Brown M; et al. - Genome biology, 2014
BACKGROUND: Various microRNAs (miRNAs) are up- or downregulated in tumors. However, the repression of cognate miRNA targets responsible for the phenotypic effects of this dysregulation in patients remains largely unexplored. To define miRNA targets and associated pathways, together with their relationship to outcome in breast cancer, we integrated patient-paired miRNA-mRNA expression data with a set of validated miRNA targets and pathway inference. RESULTS: To generate a biochemically-validated set of miRNA-binding sites, we performed argonaute-2 photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (AGO2-PAR-CLIP) in MCF7 cells. We then defined putative miRNA-target interactions using a computational model, which ranked and selected additional TargetScan-predicted interactions based on features of our AGO2-PAR-CLIP binding-site data. We subselected modeled interactions according to the abundance of their constituent miRNA and mRNA transcripts in tumors, and we took advantage of the variability of miRNA expression within molecular subtypes to detect miRNA repression. Interestingly, our data suggest that miRNA families control subtype-specific pathways; for example, miR-17, miR-19a, miR-25, and miR-200b show high miRNA regulatory activity in the triple-negative, basal-like subtype, whereas miR-22 and miR-24 do so in the HER2 subtype. An independent dataset validated our findings for miR-17 and miR-25, and showed a correlation between the expression levels of miR-182 targets and overall patient survival. Pathway analysis associated miR-17, miR-19a, and miR-200b with leukocyte transendothelial migration. CONCLUSIONS: We combined PAR-CLIP data with patient expression data to predict regulatory miRNAs, revealing potential therapeutic targets and prognostic markers in breast cancer.
LinkOut: [PMID: 24398324]
|
Experimental Support 3 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | HCT116 |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in ERX177610. RNA binding protein: AGO2. Condition:KO_V_AGO_CLIP_2_12
PAR-CLIP data was present in ERX177622. RNA binding protein: AGO2. Condition:KO_V_AGO_CLIP_3_12
PAR-CLIP data was present in ERX177634. RNA binding protein: AGO2. Condition:KO_V_AGO_CLIP_4_12
... - Krell J; Stebbing J; Carissimi C; Dabrowska et al., 2016, Genome research. |
Article |
- Krell J; Stebbing J; Carissimi C; Dabrowska et al. - Genome research, 2016
DNA damage activates TP53-regulated surveillance mechanisms that are crucial in suppressing tumorigenesis. TP53 orchestrates these responses directly by transcriptionally modulating genes, including microRNAs (miRNAs), and by regulating miRNA biogenesis through interacting with the DROSHA complex. However, whether the association between miRNAs and AGO2 is regulated following DNA damage is not yet known. Here, we show that, following DNA damage, TP53 interacts with AGO2 to induce or reduce AGO2's association of a subset of miRNAs, including multiple let-7 family members. Furthermore, we show that specific mutations in TP53 decrease rather than increase the association of let-7 family miRNAs, reducing their activity without preventing TP53 from interacting with AGO2. This is consistent with the oncogenic properties of these mutants. Using AGO2 RIP-seq and PAR-CLIP-seq, we show that the DNA damage-induced increase in binding of let-7 family members to the RISC complex is functional. We unambiguously determine the global miRNA-mRNA interaction networks involved in the DNA damage response, validating them through the identification of miRNA-target chimeras formed by endogenous ligation reactions. We find that the target complementary region of the let-7 seed tends to have highly fixed positions and more variable ones. Additionally, we observe that miRNAs, whose cellular abundance or differential association with AGO2 is regulated by TP53, are involved in an intricate network of regulatory feedback and feedforward circuits. TP53-mediated regulation of AGO2-miRNA interaction represents a new mechanism of miRNA regulation in carcinogenesis.
LinkOut: [PMID: 26701625]
|
Experimental Support 4 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | Prostate Tissue |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in SRX1760583. RNA binding protein: AGO2. Condition:AGO-CLIP-LNCaP_A
... - Hamilton MP; Rajapakshe KI; Bader DA; Cerne et al., 2016, Neoplasia (New York, N.Y.). |
Article |
- Hamilton MP; Rajapakshe KI; Bader DA; Cerne et al. - Neoplasia (New York, N.Y.), 2016
MicroRNA (miRNA) deregulation in prostate cancer (PCa) contributes to PCa initiation and metastatic progression. To comprehensively define the cancer-associated changes in miRNA targeting and function in commonly studied models of PCa, we performed photoactivatable ribonucleoside-enhanced cross-linking immunoprecipitation of the Argonaute protein in a panel of PCa cell lines modeling different stages of PCa progression. Using this comprehensive catalogue of miRNA targets, we analyzed miRNA targeting on known drivers of PCa and examined tissue-specific and stage-specific pathway targeting by miRNAs. We found that androgen receptor is the most frequently targeted PCa oncogene and that miR-148a targets the largest number of known PCa drivers. Globally, tissue-specific and stage-specific changes in miRNA targeting are driven by homeostatic response to active oncogenic pathways. Our findings indicate that, even in advanced PCa, the miRNA pool adapts to regulate continuing alterations in the cancer genome to balance oncogenic molecular changes. These findings are important because they are the first to globally characterize miRNA changes in PCa and demonstrate how the miRNA target spectrum responds to staged tumorigenesis.
LinkOut: [PMID: 27292025]
|
CLIP-seq Support 1 for dataset GSM714644 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | HEK293 / completeT1, repA |
Location of target site | ENST00000382952.3 | 3UTR | AGGCAGUUGGCAAACUUCUCAGGACAAUG |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 21572407 / GSE28865 |
CLIP-seq Viewer | Link |
CLIP-seq Support 2 for dataset SRR1045082 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | MCF7 / Untreated |
Location of target site | ENST00000382952.3 | 3UTR | CAAACUUCUCAGGACAAUG |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 24398324 / SRX388831 |
CLIP-seq Viewer | Link |
MiRNA-Target Expression Profile | |||||||
---|---|---|---|---|---|---|---|
|
MiRNA-Target Expression Profile (TCGA) | |||||||
---|---|---|---|---|---|---|---|
|
104 hsa-miR-4776-3p Target Genes:
Functional analysis:
ID | Target | Description | Validation methods | |||||||||
Strong evidence | Less strong evidence | |||||||||||
MIRT107576 | VLDLR | very low density lipoprotein receptor | 2 | 2 | ||||||||
MIRT183601 | SNRPE | small nuclear ribonucleoprotein polypeptide E | 2 | 4 | ||||||||
MIRT208901 | PDCD10 | programmed cell death 10 | 2 | 2 | ||||||||
MIRT441496 | IFFO2 | intermediate filament family orphan 2 | 2 | 2 | ||||||||
MIRT441590 | PSTK | phosphoseryl-tRNA kinase | 2 | 2 | ||||||||
MIRT441865 | RNASEL | ribonuclease L | 2 | 2 | ||||||||
MIRT442155 | DPY19L1 | dpy-19 like C-mannosyltransferase 1 | 2 | 2 | ||||||||
MIRT442235 | DDX19A | DEAD-box helicase 19A | 2 | 2 | ||||||||
MIRT442519 | MOB3B | MOB kinase activator 3B | 2 | 2 | ||||||||
MIRT443347 | STX7 | syntaxin 7 | 2 | 2 | ||||||||
MIRT443598 | ZNF91 | zinc finger protein 91 | 2 | 2 | ||||||||
MIRT443725 | USP14 | ubiquitin specific peptidase 14 | 2 | 2 | ||||||||
MIRT453650 | RAB6C | RAB6C, member RAS oncogene family | 2 | 2 | ||||||||
MIRT464155 | VMP1 | vacuole membrane protein 1 | 2 | 11 | ||||||||
MIRT472507 | NACC1 | nucleus accumbens associated 1 | 2 | 4 | ||||||||
MIRT476018 | GTF2A1 | general transcription factor IIA subunit 1 | 2 | 2 | ||||||||
MIRT477716 | EEF1A1 | eukaryotic translation elongation factor 1 alpha 1 | 2 | 2 | ||||||||
MIRT478545 | CTNND1 | catenin delta 1 | 2 | 2 | ||||||||
MIRT481629 | ARF1 | ADP ribosylation factor 1 | 2 | 2 | ||||||||
MIRT486451 | MDM2 | MDM2 proto-oncogene | 2 | 2 | ||||||||
MIRT494856 | ZNF99 | zinc finger protein 99 | 2 | 4 | ||||||||
MIRT495096 | FXR1 | FMR1 autosomal homolog 1 | 2 | 2 | ||||||||
MIRT495766 | ZNF546 | zinc finger protein 546 | 2 | 2 | ||||||||
MIRT496650 | PITPNM3 | PITPNM family member 3 | 2 | 2 | ||||||||
MIRT496920 | CLMN | calmin | 2 | 2 | ||||||||
MIRT496997 | SNAP25 | synaptosome associated protein 25 | 2 | 2 | ||||||||
MIRT497056 | C6orf223 | chromosome 6 open reading frame 223 | 2 | 2 | ||||||||
MIRT498391 | KIF6 | kinesin family member 6 | 2 | 2 | ||||||||
MIRT499057 | CTBP1 | C-terminal binding protein 1 | 2 | 4 | ||||||||
MIRT499093 | DENND4C | DENN domain containing 4C | 2 | 8 | ||||||||
MIRT499860 | SVOP | SV2 related protein | 2 | 12 | ||||||||
MIRT501968 | MAPK6 | mitogen-activated protein kinase 6 | 2 | 2 | ||||||||
MIRT504910 | CD38 | CD38 molecule | 2 | 4 | ||||||||
MIRT506781 | KLHL15 | kelch like family member 15 | 2 | 6 | ||||||||
MIRT509549 | ACTG1 | actin gamma 1 | 2 | 4 | ||||||||
MIRT510814 | SBNO1 | strawberry notch homolog 1 | 2 | 4 | ||||||||
MIRT515490 | NTRK3 | neurotrophic receptor tyrosine kinase 3 | 2 | 4 | ||||||||
MIRT517752 | ZNF366 | zinc finger protein 366 | 2 | 4 | ||||||||
MIRT518553 | GDPD1 | glycerophosphodiester phosphodiesterase domain containing 1 | 2 | 2 | ||||||||
MIRT518633 | NOM1 | nucleolar protein with MIF4G domain 1 | 2 | 2 | ||||||||
MIRT518721 | ABCG8 | ATP binding cassette subfamily G member 8 | 2 | 2 | ||||||||
MIRT524469 | CHRM3 | cholinergic receptor muscarinic 3 | 2 | 4 | ||||||||
MIRT525213 | ZNF253 | zinc finger protein 253 | 2 | 2 | ||||||||
MIRT527556 | ADCY7 | adenylate cyclase 7 | 2 | 2 | ||||||||
MIRT532691 | TCN2 | transcobalamin 2 | 2 | 4 | ||||||||
MIRT533124 | YES1 | YES proto-oncogene 1, Src family tyrosine kinase | 2 | 2 | ||||||||
MIRT534080 | SPRY4 | sprouty RTK signaling antagonist 4 | 2 | 2 | ||||||||
MIRT534437 | SDR16C5 | short chain dehydrogenase/reductase family 16C member 5 | 2 | 2 | ||||||||
MIRT534997 | PRPF40A | pre-mRNA processing factor 40 homolog A | 2 | 4 | ||||||||
MIRT537160 | GGCX | gamma-glutamyl carboxylase | 2 | 2 | ||||||||
MIRT539359 | AFF4 | AF4/FMR2 family member 4 | 2 | 2 | ||||||||
MIRT547019 | PPP1CB | protein phosphatase 1 catalytic subunit beta | 2 | 2 | ||||||||
MIRT550122 | ZNF138 | zinc finger protein 138 | 2 | 2 | ||||||||
MIRT558471 | DBN1 | drebrin 1 | 2 | 2 | ||||||||
MIRT563055 | ZNF28 | zinc finger protein 28 | 2 | 2 | ||||||||
MIRT563550 | SCP2 | sterol carrier protein 2 | 2 | 2 | ||||||||
MIRT566860 | LRRC58 | leucine rich repeat containing 58 | 2 | 2 | ||||||||
MIRT567239 | HSPA13 | heat shock protein family A (Hsp70) member 13 | 2 | 2 | ||||||||
MIRT572846 | BRPF3 | bromodomain and PHD finger containing 3 | 2 | 2 | ||||||||
MIRT573355 | PDE3A | phosphodiesterase 3A | 2 | 2 | ||||||||
MIRT573761 | PRKAG1 | protein kinase AMP-activated non-catalytic subunit gamma 1 | 2 | 2 | ||||||||
MIRT574911 | Vmp1 | vacuole membrane protein 1 | 2 | 7 | ||||||||
MIRT610172 | SEC14L4 | SEC14 like lipid binding 4 | 2 | 2 | ||||||||
MIRT611271 | RBMXL1 | RNA binding motif protein, X-linked like 1 | 2 | 2 | ||||||||
MIRT612325 | TRPS1 | transcriptional repressor GATA binding 1 | 2 | 2 | ||||||||
MIRT612720 | NOL4 | nucleolar protein 4 | 2 | 2 | ||||||||
MIRT613093 | ETS1 | ETS proto-oncogene 1, transcription factor | 2 | 2 | ||||||||
MIRT613759 | RDH11 | retinol dehydrogenase 11 (all-trans/9-cis/11-cis) | 2 | 2 | ||||||||
MIRT614788 | RRAGC | Ras related GTP binding C | 2 | 2 | ||||||||
MIRT614926 | MARCH3 | membrane associated ring-CH-type finger 3 | 2 | 2 | ||||||||
MIRT616777 | CD44 | CD44 molecule (Indian blood group) | 2 | 2 | ||||||||
MIRT616892 | DUSP1 | dual specificity phosphatase 1 | 2 | 2 | ||||||||
MIRT618446 | SERPINA3 | serpin family A member 3 | 2 | 2 | ||||||||
MIRT619155 | PPDPF | pancreatic progenitor cell differentiation and proliferation factor | 2 | 2 | ||||||||
MIRT619271 | CEP57L1 | centrosomal protein 57 like 1 | 2 | 2 | ||||||||
MIRT620899 | MUT | methylmalonyl-CoA mutase | 2 | 2 | ||||||||
MIRT621151 | MICALCL | MICAL C-terminal like | 2 | 2 | ||||||||
MIRT622138 | SOX4 | SRY-box 4 | 2 | 2 | ||||||||
MIRT622925 | PAK7 | p21 (RAC1) activated kinase 5 | 2 | 2 | ||||||||
MIRT623595 | IPO9 | importin 9 | 2 | 2 | ||||||||
MIRT623916 | FNBP1L | formin binding protein 1 like | 2 | 2 | ||||||||
MIRT624072 | EBF1 | early B-cell factor 1 | 2 | 2 | ||||||||
MIRT630961 | NGDN | neuroguidin | 2 | 2 | ||||||||
MIRT636738 | ADD3 | adducin 3 | 2 | 2 | ||||||||
MIRT639788 | MVK | mevalonate kinase | 2 | 2 | ||||||||
MIRT641106 | ZNF274 | zinc finger protein 274 | 2 | 2 | ||||||||
MIRT641573 | RFX1 | regulatory factor X1 | 2 | 2 | ||||||||
MIRT643089 | NDUFB5 | NADH:ubiquinone oxidoreductase subunit B5 | 2 | 2 | ||||||||
MIRT646457 | PRDM10 | PR/SET domain 10 | 2 | 2 | ||||||||
MIRT653068 | ST8SIA4 | ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 4 | 2 | 2 | ||||||||
MIRT657672 | GPR26 | G protein-coupled receptor 26 | 2 | 2 | ||||||||
MIRT660287 | BICC1 | BicC family RNA binding protein 1 | 2 | 2 | ||||||||
MIRT660354 | BAG4 | BCL2 associated athanogene 4 | 2 | 2 | ||||||||
MIRT665823 | TIMM8B | translocase of inner mitochondrial membrane 8 homolog B | 2 | 2 | ||||||||
MIRT678564 | ZNF786 | zinc finger protein 786 | 2 | 2 | ||||||||
MIRT691520 | ZNF208 | zinc finger protein 208 | 2 | 2 | ||||||||
MIRT695586 | TMEM199 | transmembrane protein 199 | 2 | 2 | ||||||||
MIRT698033 | TRPM7 | transient receptor potential cation channel subfamily M member 7 | 2 | 2 | ||||||||
MIRT701012 | PCGF5 | polycomb group ring finger 5 | 2 | 2 | ||||||||
MIRT701353 | NR4A3 | nuclear receptor subfamily 4 group A member 3 | 2 | 2 | ||||||||
MIRT704846 | CD55 | CD55 molecule (Cromer blood group) | 2 | 2 | ||||||||
MIRT707112 | NWD1 | NACHT and WD repeat domain containing 1 | 2 | 2 | ||||||||
MIRT718656 | HNF4A | hepatocyte nuclear factor 4 alpha | 2 | 2 | ||||||||
MIRT720561 | C1RL | complement C1r subcomponent like | 2 | 2 |
miRNA-Drug Resistance Associations | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|