pre-miRNA Information | |
---|---|
pre-miRNA | hsa-mir-664a |
Genomic Coordinates | chr1: 220200538 - 220200619 |
Description | Homo sapiens miR-664 stem-loop |
Comment | This miRNA sequence overlaps an annotated snoRNA, ACA38b. However, both miR and miR* sequences are identified in reference , and the sequence is homologous with rat mir-664. |
RNA Secondary Structure |
Mature miRNA Information | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mature miRNA | hsa-miR-664a-3p | |||||||||||||||||||||||||||||||||||||||||||||
Sequence | 49| UAUUCAUUUAUCCCCAGCCUACA |71 | |||||||||||||||||||||||||||||||||||||||||||||
Evidence | Experimental | |||||||||||||||||||||||||||||||||||||||||||||
Experiments | Illumina | DRVs in miRNA |
|
|||||||||||||||||||||||||||||||||||||||||||
SNPs in miRNA |
|
|||||||||||||||||||||||||||||||||||||||||||||
Putative Targets |
miRNA Expression profile | |
---|---|
Human miRNA Tissue Atlas | |
miRNAs in Extracellular Vesicles |
|
Circulating MicroRNA Expression Profiling |
Gene Information | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gene Symbol | CTBP1 | ||||||||||||||||||||
Synonyms | BARS | ||||||||||||||||||||
Description | C-terminal binding protein 1 | ||||||||||||||||||||
Transcript | NM_001012614 | ||||||||||||||||||||
Other Transcripts | NM_001328 | ||||||||||||||||||||
Expression | |||||||||||||||||||||
Putative miRNA Targets on CTBP1 | |||||||||||||||||||||
3'UTR of CTBP1 (miRNA target sites are highlighted) |
>CTBP1|NM_001012614|3'UTR 1 CCCGGGAGGAGCTCTCCAGCCTCGGCGCCTGGGCAGAGGGCCCGGAAACCCTCGGACCAGAGTGTGTGGAGGAGGCATCT 81 GTGTGGTGGCCCTGGCACTGCAGAGACTGGTCCGGGCTGTCAGGAGGCGGGAGGGGGCAGCGCTGGGCCTCGTGTCGCTT 161 GTCGTCGTCCGTCCTGTGGGCGCTCTGCCCTGTGTCCTTCGCGTTCCTCGTTAAGCAGAAGAAGTCAGTAGTTATTCTCC 241 CATGAACGTTCTTGTCTGTGTACAGTTTTTAGAACATTACAAAGGATCTGTTTGCTTAGCTGTCAACAAAAAGAAAACCT 321 GAAGGAGCATTTGGAAGTCAATTTGAGGTTTTTTTTTTTGTTTTTTTTTTTTTTGTATGTTGGAACGTGCCCCAGAATGA 401 GGCAGTTGGCAAACTTCTCAGGACAATGAATCCTTCCCGTTTTTCTTTTTATGCCACACAGTGCATTGTTTTTTCTACCT 481 GCTTGTCTTATTTTTAGAATAATTTAGAAAAACAAAACAAAGGCTGTTTTTCCTAATTTTGGCATGAACCCCCCCTTGTT 561 CCAAATGAAGACGGCATCACGAAGCAGCTCCAAAAGGAAAAGCTTGGGCGGTGCCCAGCGTGCCCGCTGCCCATCGACGT 641 CTGTCCTGGGGACGTGGAGGGTGGCAGCGTCCCCGCCTGCACCAGTGCCGTCCTGCTGATGTGGTAGGCTAGCAATATTT 721 TGGTTAAAATCATGTTTGTGACTGTAACCATTTGTATGAATTATTTTAAAGAAATAAAAATCCTGGAAAGAGCCAGCGTG Target sites
Provided by authors
Predicted by miRanda
DRVs
SNPs
DRVs & SNPs
|
||||||||||||||||||||
miRNA-target interactions (Predicted by miRanda) |
|
||||||||||||||||||||
DRVs in gene 3'UTRs | |||||||||||||||||||||
SNPs in gene 3'UTRs |
Experimental Support 1 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | HEK293 |
Disease | 1487.0 |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
"PAR-CLIP data was present in GSM714644. RNA binding protein: AGO2. Condition:completeT1
... - Kishore S; Jaskiewicz L; Burger L; Hausser et al., 2011, Nature methods. |
Article |
- Kishore S; Jaskiewicz L; Burger L; Hausser et al. - Nature methods, 2011
Cross-linking and immunoprecipitation (CLIP) is increasingly used to map transcriptome-wide binding sites of RNA-binding proteins. We developed a method for CLIP data analysis, and applied it to compare CLIP with photoactivatable ribonucleoside-enhanced CLIP (PAR-CLIP) and to uncover how differences in cross-linking and ribonuclease digestion affect the identified sites. We found only small differences in accuracies of these methods in identifying binding sites of HuR, which binds low-complexity sequences, and Argonaute 2, which has a complex binding specificity. We found that cross-link-induced mutations led to single-nucleotide resolution for both PAR-CLIP and CLIP. Our results confirm the expectation from original CLIP publications that RNA-binding proteins do not protect their binding sites sufficiently under the denaturing conditions used during the CLIP procedure, and we show that extensive digestion with sequence-specific RNases strongly biases the recovered binding sites. This bias can be substantially reduced by milder nuclease digestion conditions.
LinkOut: [PMID: 21572407]
|
Experimental Support 2 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | MCF7 |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in SRR1045082. RNA binding protein: AGO2. Condition:Untreated
... - Farazi TA; Ten Hoeve JJ; Brown M; et al., 2014, Genome biology. |
Article |
- Farazi TA; Ten Hoeve JJ; Brown M; et al. - Genome biology, 2014
BACKGROUND: Various microRNAs (miRNAs) are up- or downregulated in tumors. However, the repression of cognate miRNA targets responsible for the phenotypic effects of this dysregulation in patients remains largely unexplored. To define miRNA targets and associated pathways, together with their relationship to outcome in breast cancer, we integrated patient-paired miRNA-mRNA expression data with a set of validated miRNA targets and pathway inference. RESULTS: To generate a biochemically-validated set of miRNA-binding sites, we performed argonaute-2 photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (AGO2-PAR-CLIP) in MCF7 cells. We then defined putative miRNA-target interactions using a computational model, which ranked and selected additional TargetScan-predicted interactions based on features of our AGO2-PAR-CLIP binding-site data. We subselected modeled interactions according to the abundance of their constituent miRNA and mRNA transcripts in tumors, and we took advantage of the variability of miRNA expression within molecular subtypes to detect miRNA repression. Interestingly, our data suggest that miRNA families control subtype-specific pathways; for example, miR-17, miR-19a, miR-25, and miR-200b show high miRNA regulatory activity in the triple-negative, basal-like subtype, whereas miR-22 and miR-24 do so in the HER2 subtype. An independent dataset validated our findings for miR-17 and miR-25, and showed a correlation between the expression levels of miR-182 targets and overall patient survival. Pathway analysis associated miR-17, miR-19a, and miR-200b with leukocyte transendothelial migration. CONCLUSIONS: We combined PAR-CLIP data with patient expression data to predict regulatory miRNAs, revealing potential therapeutic targets and prognostic markers in breast cancer.
LinkOut: [PMID: 24398324]
|
Experimental Support 3 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | HCT116 |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in ERX177610. RNA binding protein: AGO2. Condition:KO_V_AGO_CLIP_2_12
PAR-CLIP data was present in ERX177622. RNA binding protein: AGO2. Condition:KO_V_AGO_CLIP_3_12
PAR-CLIP data was present in ERX177634. RNA binding protein: AGO2. Condition:KO_V_AGO_CLIP_4_12
... - Krell J; Stebbing J; Carissimi C; Dabrowska et al., 2016, Genome research. |
Article |
- Krell J; Stebbing J; Carissimi C; Dabrowska et al. - Genome research, 2016
DNA damage activates TP53-regulated surveillance mechanisms that are crucial in suppressing tumorigenesis. TP53 orchestrates these responses directly by transcriptionally modulating genes, including microRNAs (miRNAs), and by regulating miRNA biogenesis through interacting with the DROSHA complex. However, whether the association between miRNAs and AGO2 is regulated following DNA damage is not yet known. Here, we show that, following DNA damage, TP53 interacts with AGO2 to induce or reduce AGO2's association of a subset of miRNAs, including multiple let-7 family members. Furthermore, we show that specific mutations in TP53 decrease rather than increase the association of let-7 family miRNAs, reducing their activity without preventing TP53 from interacting with AGO2. This is consistent with the oncogenic properties of these mutants. Using AGO2 RIP-seq and PAR-CLIP-seq, we show that the DNA damage-induced increase in binding of let-7 family members to the RISC complex is functional. We unambiguously determine the global miRNA-mRNA interaction networks involved in the DNA damage response, validating them through the identification of miRNA-target chimeras formed by endogenous ligation reactions. We find that the target complementary region of the let-7 seed tends to have highly fixed positions and more variable ones. Additionally, we observe that miRNAs, whose cellular abundance or differential association with AGO2 is regulated by TP53, are involved in an intricate network of regulatory feedback and feedforward circuits. TP53-mediated regulation of AGO2-miRNA interaction represents a new mechanism of miRNA regulation in carcinogenesis.
LinkOut: [PMID: 26701625]
|
Experimental Support 4 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | Prostate Tissue |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in SRX1760583. RNA binding protein: AGO2. Condition:AGO-CLIP-LNCaP_A
... - Hamilton MP; Rajapakshe KI; Bader DA; Cerne et al., 2016, Neoplasia (New York, N.Y.). |
Article |
- Hamilton MP; Rajapakshe KI; Bader DA; Cerne et al. - Neoplasia (New York, N.Y.), 2016
MicroRNA (miRNA) deregulation in prostate cancer (PCa) contributes to PCa initiation and metastatic progression. To comprehensively define the cancer-associated changes in miRNA targeting and function in commonly studied models of PCa, we performed photoactivatable ribonucleoside-enhanced cross-linking immunoprecipitation of the Argonaute protein in a panel of PCa cell lines modeling different stages of PCa progression. Using this comprehensive catalogue of miRNA targets, we analyzed miRNA targeting on known drivers of PCa and examined tissue-specific and stage-specific pathway targeting by miRNAs. We found that androgen receptor is the most frequently targeted PCa oncogene and that miR-148a targets the largest number of known PCa drivers. Globally, tissue-specific and stage-specific changes in miRNA targeting are driven by homeostatic response to active oncogenic pathways. Our findings indicate that, even in advanced PCa, the miRNA pool adapts to regulate continuing alterations in the cancer genome to balance oncogenic molecular changes. These findings are important because they are the first to globally characterize miRNA changes in PCa and demonstrate how the miRNA target spectrum responds to staged tumorigenesis.
LinkOut: [PMID: 27292025]
|
CLIP-seq Support 1 for dataset GSM714644 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | HEK293 / completeT1, repA |
Location of target site | ENST00000382952.3 | 3UTR | AGGCAGUUGGCAAACUUCUCAGGACAAUG |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 21572407 / GSE28865 |
CLIP-seq Viewer | Link |
CLIP-seq Support 2 for dataset SRR1045082 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | MCF7 / Untreated |
Location of target site | ENST00000382952.3 | 3UTR | CAAACUUCUCAGGACAAUG |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 24398324 / SRX388831 |
CLIP-seq Viewer | Link |
MiRNA-Target Expression Profile | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
MiRNA-Target Expression Profile (TCGA) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
88 hsa-miR-664a-3p Target Genes:
Functional analysis:
ID | Target | Description | Validation methods | |||||||||
Strong evidence | Less strong evidence | |||||||||||
MIRT035824 | HIAT1 | major facilitator superfamily domain containing 14A | 1 | 1 | ||||||||
MIRT035826 | FUS | FUS RNA binding protein | 1 | 1 | ||||||||
MIRT069432 | SIVA1 | SIVA1 apoptosis inducing factor | 2 | 2 | ||||||||
MIRT071494 | CALM1 | calmodulin 1 | 2 | 2 | ||||||||
MIRT100410 | HSPA1B | heat shock protein family A (Hsp70) member 1B | 2 | 2 | ||||||||
MIRT143469 | CHD9 | chromodomain helicase DNA binding protein 9 | 2 | 2 | ||||||||
MIRT191113 | ARF6 | ADP ribosylation factor 6 | 2 | 2 | ||||||||
MIRT235584 | SNRPB2 | small nuclear ribonucleoprotein polypeptide B2 | 2 | 8 | ||||||||
MIRT339131 | ARID1A | AT-rich interaction domain 1A | 2 | 2 | ||||||||
MIRT437450 | MAT1A | methionine adenosyltransferase 1A | 1 | 1 | ||||||||
MIRT442234 | BTD | biotinidase | 2 | 2 | ||||||||
MIRT443321 | SLC35G1 | solute carrier family 35 member G1 | 2 | 2 | ||||||||
MIRT443769 | HLF | HLF, PAR bZIP transcription factor | 2 | 2 | ||||||||
MIRT444352 | KIAA1211 | KIAA1211 | 2 | 2 | ||||||||
MIRT456348 | OLIG3 | oligodendrocyte transcription factor 3 | 2 | 8 | ||||||||
MIRT458866 | CD55 | CD55 molecule (Cromer blood group) | 2 | 2 | ||||||||
MIRT466169 | TMED5 | transmembrane p24 trafficking protein 5 | 2 | 2 | ||||||||
MIRT470445 | PPP1R15B | protein phosphatase 1 regulatory subunit 15B | 2 | 6 | ||||||||
MIRT471524 | PCGF3 | polycomb group ring finger 3 | 2 | 6 | ||||||||
MIRT477744 | EDN1 | endothelin 1 | 2 | 2 | ||||||||
MIRT482885 | CACNA2D3 | calcium voltage-gated channel auxiliary subunit alpha2delta 3 | 2 | 2 | ||||||||
MIRT496336 | PTPRT | protein tyrosine phosphatase, receptor type T | 2 | 2 | ||||||||
MIRT497703 | ARL6IP6 | ADP ribosylation factor like GTPase 6 interacting protein 6 | 2 | 2 | ||||||||
MIRT499068 | CTBP1 | C-terminal binding protein 1 | 2 | 4 | ||||||||
MIRT500296 | ZNF667 | zinc finger protein 667 | 2 | 8 | ||||||||
MIRT500506 | ZBTB34 | zinc finger and BTB domain containing 34 | 2 | 8 | ||||||||
MIRT501964 | MAPK8 | mitogen-activated protein kinase 8 | 2 | 2 | ||||||||
MIRT505457 | SUB1 | SUB1 homolog, transcriptional regulator | 2 | 4 | ||||||||
MIRT505955 | RAN | RAN, member RAS oncogene family | 2 | 6 | ||||||||
MIRT507512 | DYNLL2 | dynein light chain LC8-type 2 | 2 | 4 | ||||||||
MIRT512953 | MKI67 | marker of proliferation Ki-67 | 2 | 2 | ||||||||
MIRT520450 | TSPAN2 | tetraspanin 2 | 2 | 6 | ||||||||
MIRT525997 | MAGEL2 | MAGE family member L2 | 2 | 2 | ||||||||
MIRT526424 | ZNF695 | zinc finger protein 695 | 2 | 2 | ||||||||
MIRT527364 | KRTAP13-2 | keratin associated protein 13-2 | 2 | 2 | ||||||||
MIRT529612 | H1F0 | H1 histone family member 0 | 2 | 2 | ||||||||
MIRT529811 | TMLHE | trimethyllysine hydroxylase, epsilon | 2 | 2 | ||||||||
MIRT530971 | EXO5 | exonuclease 5 | 2 | 4 | ||||||||
MIRT531294 | WNT7A | Wnt family member 7A | 2 | 2 | ||||||||
MIRT531870 | POF1B | premature ovarian failure, 1B | 2 | 2 | ||||||||
MIRT532116 | G6PC | glucose-6-phosphatase catalytic subunit | 2 | 2 | ||||||||
MIRT533534 | TPR | translocated promoter region, nuclear basket protein | 2 | 2 | ||||||||
MIRT545934 | ZBTB44 | zinc finger and BTB domain containing 44 | 2 | 4 | ||||||||
MIRT546649 | RPS6KA5 | ribosomal protein S6 kinase A5 | 2 | 2 | ||||||||
MIRT548063 | GNS | glucosamine (N-acetyl)-6-sulfatase | 2 | 2 | ||||||||
MIRT548288 | FAM3C | family with sequence similarity 3 member C | 2 | 4 | ||||||||
MIRT551018 | SPPL3 | signal peptide peptidase like 3 | 2 | 2 | ||||||||
MIRT551139 | ZNF678 | zinc finger protein 678 | 2 | 2 | ||||||||
MIRT552398 | ZNF487P | zinc finger protein 487 | 1 | 1 | ||||||||
MIRT555640 | PHIP | pleckstrin homology domain interacting protein | 2 | 4 | ||||||||
MIRT556267 | MAPK6 | mitogen-activated protein kinase 6 | 2 | 2 | ||||||||
MIRT558864 | CD2AP | CD2 associated protein | 2 | 2 | ||||||||
MIRT559239 | BEND4 | BEN domain containing 4 | 2 | 2 | ||||||||
MIRT559438 | ARSJ | arylsulfatase family member J | 2 | 2 | ||||||||
MIRT559793 | ZNF415 | zinc finger protein 415 | 2 | 2 | ||||||||
MIRT562572 | CBX6 | chromobox 6 | 2 | 2 | ||||||||
MIRT562741 | ZNF83 | zinc finger protein 83 | 2 | 2 | ||||||||
MIRT564737 | ZNF23 | zinc finger protein 23 | 2 | 2 | ||||||||
MIRT565174 | LINC00598 | long intergenic non-protein coding RNA 598 | 2 | 2 | ||||||||
MIRT566301 | PPM1A | protein phosphatase, Mg2+/Mn2+ dependent 1A | 2 | 2 | ||||||||
MIRT571656 | SERBP1 | SERPINE1 mRNA binding protein 1 | 2 | 2 | ||||||||
MIRT610720 | NAV2 | neuron navigator 2 | 2 | 2 | ||||||||
MIRT611486 | ADCYAP1R1 | ADCYAP receptor type I | 2 | 4 | ||||||||
MIRT617118 | KANK2 | KN motif and ankyrin repeat domains 2 | 2 | 2 | ||||||||
MIRT617836 | SIGLEC10 | sialic acid binding Ig like lectin 10 | 2 | 2 | ||||||||
MIRT636145 | VLDLR | very low density lipoprotein receptor | 2 | 2 | ||||||||
MIRT638060 | YAE1D1 | Yae1 domain containing 1 | 2 | 4 | ||||||||
MIRT640159 | CDK13 | cyclin dependent kinase 13 | 2 | 2 | ||||||||
MIRT644257 | WEE2 | WEE1 homolog 2 | 2 | 2 | ||||||||
MIRT646838 | TLDC1 | TBC/LysM-associated domain containing 1 | 2 | 2 | ||||||||
MIRT653074 | ST8SIA4 | ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 4 | 2 | 2 | ||||||||
MIRT657671 | GPR26 | G protein-coupled receptor 26 | 2 | 2 | ||||||||
MIRT660601 | AP3M2 | adaptor related protein complex 3 mu 2 subunit | 2 | 2 | ||||||||
MIRT668908 | CREB1 | cAMP responsive element binding protein 1 | 2 | 2 | ||||||||
MIRT672685 | GTF2H5 | general transcription factor IIH subunit 5 | 2 | 2 | ||||||||
MIRT680977 | DCAF17 | DDB1 and CUL4 associated factor 17 | 2 | 2 | ||||||||
MIRT682271 | RS1 | retinoschisin 1 | 2 | 2 | ||||||||
MIRT702058 | RNMT | RNA guanine-7 methyltransferase | 2 | 2 | ||||||||
MIRT707786 | UNK | unkempt family zinc finger | 2 | 2 | ||||||||
MIRT709238 | RANGAP1 | Ran GTPase activating protein 1 | 2 | 2 | ||||||||
MIRT710119 | MED23 | mediator complex subunit 23 | 2 | 2 | ||||||||
MIRT710675 | ADAP2 | ArfGAP with dual PH domains 2 | 2 | 2 | ||||||||
MIRT712884 | NIPBL | NIPBL, cohesin loading factor | 2 | 2 | ||||||||
MIRT719015 | HPGD | 15-hydroxyprostaglandin dehydrogenase | 2 | 2 | ||||||||
MIRT723323 | COLEC10 | collectin subfamily member 10 | 2 | 2 | ||||||||
MIRT724947 | TXNL1 | thioredoxin like 1 | 2 | 2 | ||||||||
MIRT725535 | EN2 | engrailed homeobox 2 | 2 | 2 | ||||||||
MIRT734156 | FHL1 | four and a half LIM domains 1 | 3 | 0 |
miRNA-Drug Resistance Associations | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|