pre-miRNA Information | |
---|---|
pre-miRNA | hsa-mir-3119-1 |
Genomic Coordinates | chr1: 170151378 - 170151462 |
Description | Homo sapiens miR-3119-1 stem-loop |
Comment | None |
RNA Secondary Structure | |
pre-miRNA | hsa-mir-3119-2 |
Genomic Coordinates | chr1: 170151378 - 170151462 |
Description | Homo sapiens miR-3119-2 stem-loop |
Comment | None |
RNA Secondary Structure |
Mature miRNA Information | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mature miRNA | hsa-miR-3119 | ||||||||||||||||||||||||||||||
Sequence | 9| UGGCUUUUAACUUUGAUGGC |28 | ||||||||||||||||||||||||||||||
Evidence | Experimental | ||||||||||||||||||||||||||||||
Experiments | Illumina | ||||||||||||||||||||||||||||||
SNPs in miRNA |
|
||||||||||||||||||||||||||||||
Putative Targets |
Gene Information | |
---|---|
Gene Symbol | XBP1P1 |
Experimental Support 1 for Functional miRNA-Target Interaction | |||||||
---|---|---|---|---|---|---|---|
miRNA:Target | ---- | ||||||
Validation Method |
|
||||||
Conditions | HEK293 | ||||||
Location of target site | 3'UTR | ||||||
Tools used in this research | TargetScan , miRTarCLIP , Piranha | ||||||
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in GSM545212. RNA binding protein: AGO1. Condition:Control
... - Hafner M; Landthaler M; Burger L; Khorshid et al., 2010, Cell. |
||||||
miRNA-target interactions (Provided by authors) |
|
||||||
Article |
- Hafner M; Landthaler M; Burger L; Khorshid et al. - Cell, 2010
RNA transcripts are subject to posttranscriptional gene regulation involving hundreds of RNA-binding proteins (RBPs) and microRNA-containing ribonucleoprotein complexes (miRNPs) expressed in a cell-type dependent fashion. We developed a cell-based crosslinking approach to determine at high resolution and transcriptome-wide the binding sites of cellular RBPs and miRNPs. The crosslinked sites are revealed by thymidine to cytidine transitions in the cDNAs prepared from immunopurified RNPs of 4-thiouridine-treated cells. We determined the binding sites and regulatory consequences for several intensely studied RBPs and miRNPs, including PUM2, QKI, IGF2BP1-3, AGO/EIF2C1-4 and TNRC6A-C. Our study revealed that these factors bind thousands of sites containing defined sequence motifs and have distinct preferences for exonic versus intronic or coding versus untranslated transcript regions. The precise mapping of binding sites across the transcriptome will be critical to the interpretation of the rapidly emerging data on genetic variation between individuals and how these variations contribute to complex genetic diseases.
LinkOut: [PMID: 20371350]
|
Experimental Support 2 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | HEK293 |
Disease | 7495.0 |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
"PAR-CLIP data was present in GSM714645. RNA binding protein: AGO2. Condition:completeT1
... - Kishore S; Jaskiewicz L; Burger L; Hausser et al., 2011, Nature methods. |
Article |
- Kishore S; Jaskiewicz L; Burger L; Hausser et al. - Nature methods, 2011
Cross-linking and immunoprecipitation (CLIP) is increasingly used to map transcriptome-wide binding sites of RNA-binding proteins. We developed a method for CLIP data analysis, and applied it to compare CLIP with photoactivatable ribonucleoside-enhanced CLIP (PAR-CLIP) and to uncover how differences in cross-linking and ribonuclease digestion affect the identified sites. We found only small differences in accuracies of these methods in identifying binding sites of HuR, which binds low-complexity sequences, and Argonaute 2, which has a complex binding specificity. We found that cross-link-induced mutations led to single-nucleotide resolution for both PAR-CLIP and CLIP. Our results confirm the expectation from original CLIP publications that RNA-binding proteins do not protect their binding sites sufficiently under the denaturing conditions used during the CLIP procedure, and we show that extensive digestion with sequence-specific RNases strongly biases the recovered binding sites. This bias can be substantially reduced by milder nuclease digestion conditions.
LinkOut: [PMID: 21572407]
|
Experimental Support 3 for Functional miRNA-Target Interaction | |||||||
---|---|---|---|---|---|---|---|
miRNA:Target | ---- | ||||||
Validation Method |
|
||||||
Conditions | HEK293 | ||||||
Disease | 7495.0 | ||||||
Location of target site | 3'UTR | ||||||
Tools used in this research | TargetScan , miRTarCLIP , Piranha | ||||||
Original Description (Extracted from the article) |
...
"PAR-CLIP data was present in GSM1065669. RNA binding protein: AGO1. Condition:4-thiouridine
... - Memczak S; Jens M; Elefsinioti A; Torti F; et al., 2013, Nature. |
||||||
miRNA-target interactions (Provided by authors) |
|
||||||
Article |
- Memczak S; Jens M; Elefsinioti A; Torti F; et al. - Nature, 2013
Circular RNAs (circRNAs) in animals are an enigmatic class of RNA with unknown function. To explore circRNAs systematically, we sequenced and computationally analysed human, mouse and nematode RNA. We detected thousands of well-expressed, stable circRNAs, often showing tissue/developmental-stage-specific expression. Sequence analysis indicated important regulatory functions for circRNAs. We found that a human circRNA, antisense to the cerebellar degeneration-related protein 1 transcript (CDR1as), is densely bound by microRNA (miRNA) effector complexes and harbours 63 conserved binding sites for the ancient miRNA miR-7. Further analyses indicated that CDR1as functions to bind miR-7 in neuronal tissues. Human CDR1as expression in zebrafish impaired midbrain development, similar to knocking down miR-7, suggesting that CDR1as is a miRNA antagonist with a miRNA-binding capacity ten times higher than any other known transcript. Together, our data provide evidence that circRNAs form a large class of post-transcriptional regulators. Numerous circRNAs form by head-to-tail splicing of exons, suggesting previously unrecognized regulatory potential of coding sequences.
LinkOut: [PMID: 23446348]
|
Experimental Support 4 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | MCF7 |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in SRR1045082. RNA binding protein: AGO2. Condition:Untreated
... - Farazi TA; Ten Hoeve JJ; Brown M; et al., 2014, Genome biology. |
Article |
- Farazi TA; Ten Hoeve JJ; Brown M; et al. - Genome biology, 2014
BACKGROUND: Various microRNAs (miRNAs) are up- or downregulated in tumors. However, the repression of cognate miRNA targets responsible for the phenotypic effects of this dysregulation in patients remains largely unexplored. To define miRNA targets and associated pathways, together with their relationship to outcome in breast cancer, we integrated patient-paired miRNA-mRNA expression data with a set of validated miRNA targets and pathway inference. RESULTS: To generate a biochemically-validated set of miRNA-binding sites, we performed argonaute-2 photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (AGO2-PAR-CLIP) in MCF7 cells. We then defined putative miRNA-target interactions using a computational model, which ranked and selected additional TargetScan-predicted interactions based on features of our AGO2-PAR-CLIP binding-site data. We subselected modeled interactions according to the abundance of their constituent miRNA and mRNA transcripts in tumors, and we took advantage of the variability of miRNA expression within molecular subtypes to detect miRNA repression. Interestingly, our data suggest that miRNA families control subtype-specific pathways; for example, miR-17, miR-19a, miR-25, and miR-200b show high miRNA regulatory activity in the triple-negative, basal-like subtype, whereas miR-22 and miR-24 do so in the HER2 subtype. An independent dataset validated our findings for miR-17 and miR-25, and showed a correlation between the expression levels of miR-182 targets and overall patient survival. Pathway analysis associated miR-17, miR-19a, and miR-200b with leukocyte transendothelial migration. CONCLUSIONS: We combined PAR-CLIP data with patient expression data to predict regulatory miRNAs, revealing potential therapeutic targets and prognostic markers in breast cancer.
LinkOut: [PMID: 24398324]
|
CLIP-seq Support 1 for dataset GSM545212 | |
---|---|
Method / RBP | PAR-CLIP / AGO1 |
Cell line / Condition | HEK293 / Control |
Location of target site | ENST00000216037.6 | 3UTR | cccaaagccaucuuccugccuacuggaugcuuacag |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 20371350 / GSE21578 |
CLIP-seq Viewer | Link |
CLIP-seq Support 2 for dataset GSM714645 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | HEK293 / completeT1, repB |
Location of target site | ENST00000216037.6 | 3UTR | ccaucuuccugccuacuggaugcuuacag |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 21572407 / GSE28865 |
CLIP-seq Viewer | Link |
CLIP-seq Support 3 for dataset GSM1065669 | |
---|---|
Method / RBP | PAR-CLIP / AGO1 |
Cell line / Condition | HEK293 / 4-thiouridine, ML_MM_8 |
Location of target site | ENST00000216037.6 | 3UTR | cccaaagccaucuuccugccuacuggaugcuuaca |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 23446348 / GSE43573 |
CLIP-seq Viewer | Link |
CLIP-seq Support 4 for dataset SRR1045082 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | MCF7 / Untreated |
Location of target site | ENST00000216037.6 | 3UTR | ccaucuuccugccuacuggaugcuuacag |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 24398324 / SRX388831 |
CLIP-seq Viewer | Link |
MiRNA-Target Expression Profile | |||||||
---|---|---|---|---|---|---|---|
|
MiRNA-Target Expression Profile (TCGA) | |||||||
---|---|---|---|---|---|---|---|
|
67 hsa-miR-3119 Target Genes:
Functional analysis:
ID | Target | Description | Validation methods | |||||||||
Strong evidence | Less strong evidence | |||||||||||
MIRT130164 | TXNIP | thioredoxin interacting protein | 2 | 4 | ||||||||
MIRT364023 | SDCBP | syndecan binding protein | 2 | 2 | ||||||||
MIRT383920 | BTG2 | BTG anti-proliferation factor 2 | 2 | 2 | ||||||||
MIRT397609 | RACGAP1 | Rac GTPase activating protein 1 | 2 | 2 | ||||||||
MIRT404072 | ZBTB21 | zinc finger and BTB domain containing 21 | 2 | 2 | ||||||||
MIRT443202 | ECHDC3 | enoyl-CoA hydratase domain containing 3 | 2 | 2 | ||||||||
MIRT446469 | THUMPD3 | THUMP domain containing 3 | 2 | 2 | ||||||||
MIRT446489 | PRELP | proline and arginine rich end leucine rich repeat protein | 2 | 2 | ||||||||
MIRT446849 | FIBIN | fin bud initiation factor homolog (zebrafish) | 2 | 2 | ||||||||
MIRT463282 | ZFX | zinc finger protein, X-linked | 2 | 4 | ||||||||
MIRT478441 | DAZAP2 | DAZ associated protein 2 | 2 | 2 | ||||||||
MIRT480447 | C16orf72 | chromosome 16 open reading frame 72 | 2 | 2 | ||||||||
MIRT480632 | BTBD3 | BTB domain containing 3 | 2 | 6 | ||||||||
MIRT487460 | ANKRD42 | ankyrin repeat domain 42 | 2 | 2 | ||||||||
MIRT487497 | IL1F10 | interleukin 1 family member 10 | 2 | 4 | ||||||||
MIRT491967 | USP37 | ubiquitin specific peptidase 37 | 2 | 2 | ||||||||
MIRT495620 | PPP1R1C | protein phosphatase 1 regulatory inhibitor subunit 1C | 2 | 2 | ||||||||
MIRT496151 | RPS15A | ribosomal protein S15a | 2 | 2 | ||||||||
MIRT498042 | SNX5 | sorting nexin 5 | 2 | 6 | ||||||||
MIRT500546 | XBP1P1 | X-box binding protein 1 pseudogene 1 | 2 | 8 | ||||||||
MIRT503902 | ZSCAN25 | zinc finger and SCAN domain containing 25 | 2 | 2 | ||||||||
MIRT513157 | BIRC5 | baculoviral IAP repeat containing 5 | 2 | 6 | ||||||||
MIRT519070 | KCNK6 | potassium two pore domain channel subfamily K member 6 | 2 | 2 | ||||||||
MIRT519741 | ZNF394 | zinc finger protein 394 | 2 | 4 | ||||||||
MIRT522733 | LRP8 | LDL receptor related protein 8 | 2 | 4 | ||||||||
MIRT539402 | ADIPOR2 | adiponectin receptor 2 | 2 | 2 | ||||||||
MIRT551660 | KIAA1143 | KIAA1143 | 2 | 4 | ||||||||
MIRT559131 | BTG3 | BTG anti-proliferation factor 3 | 2 | 4 | ||||||||
MIRT559307 | ATXN1 | ataxin 1 | 2 | 2 | ||||||||
MIRT559515 | ARHGEF26 | Rho guanine nucleotide exchange factor 26 | 2 | 2 | ||||||||
MIRT560771 | RRP7A | ribosomal RNA processing 7 homolog A | 2 | 2 | ||||||||
MIRT562210 | HMGB2 | high mobility group box 2 | 2 | 2 | ||||||||
MIRT562734 | ZNF468 | zinc finger protein 468 | 2 | 2 | ||||||||
MIRT563070 | EMC8 | ER membrane protein complex subunit 8 | 2 | 2 | ||||||||
MIRT563731 | ZNF107 | zinc finger protein 107 | 2 | 4 | ||||||||
MIRT576719 | Wars | tryptophanyl-tRNA synthetase | 2 | 2 | ||||||||
MIRT612872 | IGFBP5 | insulin like growth factor binding protein 5 | 2 | 4 | ||||||||
MIRT613214 | CCDC85C | coiled-coil domain containing 85C | 2 | 4 | ||||||||
MIRT613591 | THSD7A | thrombospondin type 1 domain containing 7A | 2 | 2 | ||||||||
MIRT614332 | NANOS1 | nanos C2HC-type zinc finger 1 | 2 | 4 | ||||||||
MIRT614929 | MARCH3 | membrane associated ring-CH-type finger 3 | 2 | 2 | ||||||||
MIRT616257 | KANK4 | KN motif and ankyrin repeat domains 4 | 2 | 2 | ||||||||
MIRT617087 | FPR1 | formyl peptide receptor 1 | 2 | 2 | ||||||||
MIRT617167 | SLC16A5 | solute carrier family 16 member 5 | 2 | 2 | ||||||||
MIRT620350 | WDR75 | WD repeat domain 75 | 2 | 2 | ||||||||
MIRT621041 | SOX30 | SRY-box 30 | 2 | 2 | ||||||||
MIRT625936 | SCYL3 | SCY1 like pseudokinase 3 | 2 | 2 | ||||||||
MIRT636872 | BCORL1 | BCL6 corepressor like 1 | 2 | 2 | ||||||||
MIRT637019 | CLASP1 | cytoplasmic linker associated protein 1 | 2 | 2 | ||||||||
MIRT637299 | ACTN2 | actinin alpha 2 | 2 | 2 | ||||||||
MIRT639734 | MAP2K2 | mitogen-activated protein kinase kinase 2 | 2 | 2 | ||||||||
MIRT640811 | ZMAT1 | zinc finger matrin-type 1 | 2 | 2 | ||||||||
MIRT642879 | SAMD1 | sterile alpha motif domain containing 1 | 2 | 2 | ||||||||
MIRT648116 | ADAT1 | adenosine deaminase, tRNA specific 1 | 2 | 2 | ||||||||
MIRT655769 | NPTX1 | neuronal pentraxin 1 | 2 | 2 | ||||||||
MIRT655801 | NOVA2 | NOVA alternative splicing regulator 2 | 2 | 2 | ||||||||
MIRT659142 | DDR2 | discoidin domain receptor tyrosine kinase 2 | 2 | 2 | ||||||||
MIRT660327 | BCL11B | B-cell CLL/lymphoma 11B | 2 | 2 | ||||||||
MIRT662150 | IPO11 | importin 11 | 2 | 2 | ||||||||
MIRT664741 | METTL16 | methyltransferase like 16 | 2 | 2 | ||||||||
MIRT670134 | HOXD12 | homeobox D12 | 2 | 2 | ||||||||
MIRT679027 | ZNF419 | zinc finger protein 419 | 2 | 2 | ||||||||
MIRT695596 | TMEM199 | transmembrane protein 199 | 2 | 2 | ||||||||
MIRT703345 | GATAD2B | GATA zinc finger domain containing 2B | 2 | 2 | ||||||||
MIRT704097 | DST | dystonin | 2 | 2 | ||||||||
MIRT711833 | AMOTL2 | angiomotin like 2 | 2 | 2 | ||||||||
MIRT715820 | ZNF598 | zinc finger protein 598 | 2 | 2 |
miRNA-Drug Resistance Associations | ||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|