pre-miRNA Information | |
---|---|
pre-miRNA | hsa-mir-4436b-1 |
Genomic Coordinates | chr2: 110086433 - 110086523 |
Description | Homo sapiens miR-4436b-1 stem-loop |
Comment | None |
RNA Secondary Structure | ![]() |
pre-miRNA | hsa-mir-4436b-2 |
Genomic Coordinates | chr2: 110284853 - 110284943 |
Description | Homo sapiens miR-4436b-2 stem-loop |
Comment | None |
RNA Secondary Structure | ![]() |
Mature miRNA Information | |||||||
---|---|---|---|---|---|---|---|
Mature miRNA | hsa-miR-4436b-3p | ||||||
Sequence | 60| CAGGGCAGGAAGAAGUGGACAA |81 | ||||||
Evidence | Experimental | ||||||
Experiments | Illumina | ||||||
SNPs in miRNA |
|
||||||
Putative Targets |
miRNA Expression profile | |
---|---|
Human miRNA Tissue Atlas | |
Circulating MicroRNA Expression Profiling |
Gene Information | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gene Symbol | FBXO41 | ||||||||||||||||||||
Synonyms | FBX41 | ||||||||||||||||||||
Description | F-box protein 41 | ||||||||||||||||||||
Transcript | NM_001080410 | ||||||||||||||||||||
Expression | |||||||||||||||||||||
Putative miRNA Targets on FBXO41 | |||||||||||||||||||||
3'UTR of FBXO41 (miRNA target sites are highlighted) |
>FBXO41|NM_001080410|3'UTR 1 CCCGGGTAGGGGGCGGCAGGGCCCCTGCCAGCCCCACACCAGGGCACTCTCTTTGGACCTCAGAGGGACCCTGGTTTGGA 81 CTAGACCTTTGGAGGCCGAGTGTTATCCCTGGCTTCTGGAGGGGGACTGTCAAGTCTCCTGTCCTCCTCCTGGAGCAGCA 161 GAGCAACAGGCCTGACCCAGGGCACTGCCTCCCCAGTACAGGGGCTTGGACAGAAGCTGCCCTCCGACCCCCACCCTACC 241 CCGGCTGGAGTAGCCTCTGGCACAGCCAGTGAGGAGCTGTCACCACCAGCGCCTGGTGTCATCACCTGGAGGATCTGCAA 321 TAACCACCCAGTGGCTCCTCAGCTGTTCTGGCTGGCCTCTCCTTCCTGAGGCCCAGCCTCCTGGTCAGGAGCATCTGGGG 401 CCCCAAGCCAATGGGGGCTCCACAAGGCAGCTCAGACTTGGCAAGGAGGGCTCTTCTCCTCAACCTTGCTGCAGCCTTCT 481 GGGGGCACCCCTTCAGACAGCCTGCCCAGGCTGTGGATCCACATTTCCTGGGGGTACCACAGCCAGACCTAGGGGCCTGG 561 GCACGTGGTCAGCCAAAAGCTGGGGGCAGCAGTACAGTGGGGTAGTGGGGGTGGGTTTGGAAAGGAAACAGTCACCCAGA 641 ACTTCTCCCCAGGATGAGACCACCCTTCCAAGGTGGGGGATTGCCAGGGGGAGAAAACTTATTTATTGCTGTAAGACAGG 721 ACCCCTCCTCCCAACCTCATACCCCACCGCACACCAGAGCTAAATTCAAAGCTGAAAGGCGCACGTTTCTATACCTACAT 801 TCATTCCTGAGGGACCCTCCAGAGGGTCAAGGTCCCAGCCCCAGGCAGCCCTGTCACAGTGAGAAGTAGTTCCTGTCCTT 881 AAGGAATTTCCTTCTAATCCAGGTGCTTGGGCAGGAACCCGATGGCCTTCGGGTCACCAAGGCTGTCTGGGAGGGAGGCA 961 CAGGGCCGCCCTCTGTGCTGAGGCCGTGGAGGAAGCCAGGAGGAGGGTGGCTTGCTTTGCTTCCTTGTCTAATTAGCTTG 1041 CTTGAAGATGTGGCCTTGGCAGGGAGCCAGACCCATGGGGCCAAGGAAGAGGAAGAGCATCCTCAATAGACTCACTCCCC 1121 CTTCCTTGGTCTCCACGGGCCCCGTGGACTGAGGGCTGCATTGGGGTCTTCTGCCTAGGGGAAGTGCTGGACCTGAGCTG 1201 GAGCCACTTGGCTTAGAAGCCACAGGATTCACTTTTCACTGGCCTTTGCAGTCCCCAAAGGATCAGGTCTCAGAACCAAG 1281 GCTCCAAAGGCTGAGGTCTCCCCAGTTCCTCCTCTCAGAACTCCCACAGTAGCTCAGAGGCCGGGGGTCCTGCCAACTTT 1361 CATTTGGAAAGTTCTTTCGAACATCTAAACTAGATCTATCTTAGGGTTTCTTTCTCTCCTAGATAGGATCAGCTCCCAGC 1441 CCTAGCCATTAGGCTGCTGGTCCTGGCGGGGGATGGGGTCCCCTCGTTACCCAGTCCTTCCCAGGGACCCAACTTCCTAA 1521 CACAACCTGGCTTGGACATGAAGACCCTCCCCCAGGTTACCTTGTAAAGAGTCCTCCAGAGCTGGGATCCCATGGGCGCA 1601 GCAGCACACCCAGCTCCCATGGCGTCACTCCCTAGCTCTGTCCCAGCTTTTGCTATCATTGCTGACTTTTCCTCCTGTGG 1681 CTCATTCTGTCCCTGCCCTTTGAAAACCTAAAATACCAAGGGTGTCATGCTGGCAACTCCCTGCCCAGTCCTGCACAAAG 1761 CCTTGGCTGTGTGTGGCACCCCTTGCCTCCTACCCCAGAGCAGCTGGCTCCATTGGCTTCTCCCTGCACCAGCCCTGTCC 1841 TCAGGGGTCAGGAAAAAGCAGCACAGCTTTCTTTCCTCTCCTCCAGAGGCCTGGAAGGGAGGTGGAGGTCCAGTAAGGGC 1921 CTGGCTGCCTTGGATTTCTTGGTCCTGCCTTGCCAACTGCACCCTGTAGCTCCTGCTCCCTGTGACCCCAGAACCAGAGG 2001 TGCTGCCTTCCCTGTCTCCTAGACAAAGCACAAAGGGATGCCCTGCTTGGCTTGAGCCTGCCCAACTGAAGGATTTTCTC 2081 TGCCCCAGGGACCTTCCATCCCTGAATACAAGGCTCTAGGCAACTTCTCTCTGGGTGGTACACACTAGAATGCCTGGCAT 2161 TAGCCCTAGAAAGGAGGTTGGGGTGTATGGGTAGTGAGCTAGGGTGGGAGAAAGGTGGTGCTGAAAGGACAGATGCTAGT 2241 TGTAGTTTCACTCACTCATTCATTCATTAGTGCAACAGTACTGAGCACCACCTGCACTAGAGGCAGAGGGGTGAACAAGA 2321 TACCCTTCTGCCTGGGGGGACGTCCACTTCCCATGGGTTTGGCTATTTCCAGGAAAGCCCCTCAGTCCTCCACCCTGTTC 2401 TGGCTGTGTGTGAAGGATGTGTGTGAGCAGGCCCAATCCTTTGCAGCAAGAATGAGAGGTCAGAGTATTCCATTGCACAC 2481 GCACCCTGGGGCTGACAGACTTGTGCCCCCTAGCCTTCATGCATGCCCAAGCACTGGCAGCTTTGCAGCCCCTGCCCCAC 2561 CAGCCCCTTGACGCTCTTCTTTTGTTCTCTCCTCGGGGATGAGCTCTGCTGCTGAGTAGGGAGCTTTTGCTTGCTGGGAG 2641 GCTCTATGCATGGATTTTTTTGGTGACCATACAGCTAGGGCTGAGGATGGGAACAGGGACAGAGGGCCTGGCTATCCCTA 2721 GAAGCACTTCATCCATCTTTACCCACCCAAACGGGATCCCTTCACATCTCATACCCAGTAAGATGCAAGAAAGGAATATC 2801 TGAGAGCAAGCAGCCCTGCTCCAGGGGCCCCAGGTATGTGTAGAGGCCCAGTGGGGGTGGCCACTTGGTGTTTCTACCAC 2881 CCCCTGCCATCCAGTCTGGCCCCAGTACCTACCTGGGAGGTTGGTGTACTTGGCTTAAGTACTTCATGCTTTATTCAGGC 2961 TGCTTCCCCACAGCACCGGCAGGAAATGAAGGTGCACTTATATGCATCCCTGCAGGAATAAAGAGTGGGTGGCCTGCCCA 3041 GCCCAGCACCACAGCCTTTCCCCAGCCAGGAGAGACCACCTAAGGATCAAGGCAGCTCCTGTTTTCTTGGTTCTGTGACA 3121 CTCGAGTCTGAGCCAGCCCCTCAGGAATTGCCTCAAAAGAGAAAAACAAAAAAAAGTCCTCCTTCCCAAGGCCTGCTACT 3201 CCAAGGTTTGGCTCCATCCCTTGCCTTTGGGTCCTGCCTATTTCCCCACTCCTGGTCTCTTATCTTTGGGGCCACCAGTG 3281 GGGAGTCACCCGGGCCCCAATCCCTCTAAGGCGCTAAGTTGAAGGAGGCCTTCCCAGAGTGACTATTGGTGCCAAAGTCC 3361 CAGTTCCTGTTGGACTTGGGGTAAAAACAGGAGATGGTGAGTGGGTGTAAGGCCCAAATGCCCAGAGAAGTTAACTCGAA 3441 CCCATGGGACCTGTCCCAGCCTGTCAGTCCCTGATGAGTGTAACTTCCTTCCCCTGGGGGCCTGGCCCTTCTCTCCAACC 3521 CAGTGGCCATGCTTTCTCACCCAGCCTTGTGCCCGGCCTGCATTTCTGTATATATTGCTGTGTATTGTGTGTATGTATGT 3601 ATTCCTGGACAAGTGTGTTCATCTGCAGCCCTTGCCTGAGGATAAGGTTTAGGATTGGGTAAAGATCAGAATACCAGGGC 3681 CAGCTAAGGCAACGACTCCCTCCCCAAACCCTTGGGACCTCAGCCAGTCCCAAGGCTGCCCTGACAATCAGGCAGGCTCC 3761 CCACCGTGAGGCCAAGCCTCCTCTGCCACTGCCAGCATGGCCCAAGGGAGGCTTGGCCTTGGGCTTGCCAGCCTCAGCTC 3841 TGCCCTGACAAGGGTCTTGTATCCAGGGCAGAGGCCTGAGGTGACCCAGGCTTGCTTTGTGGCTGATGCCAGCAGGCTTG 3921 GTTCTAGTGGGCACCACTGGTGGGCAACCTCCATAACTGGCCCTTAGGCCCTACCTTCCTACACAGCTAGGCTATAATGG 4001 GCCTGAGTGAGAGGGTAGCTTCCCCAGCCCCAAGCACAGGCAGAGGGGTGGAGAGCAATTTTTGGTTTTATTTTTGTTTC 4081 TGAAGTGGTGCCTGTACCTCCAGCCCCCAGGGGGCCTTCCCTGGCCACACTTCTCTGCCCCACCCAGGCATCGCCATCCC 4161 AGCACTTTGCTCCATGTCACCCGTAAGATGCCCTTTGCTGAATGTACCTGAGTGTATGTATTTAAAAGGACTCACATGGG 4241 CATCAGAGAATTTATGGCTCTGTATCCAATAAAAAAGATGGTGAAACTGGTCTATCTGCCAAAAAAAAAAA Target sites
Provided by authors
Predicted by miRanda
DRVs
SNPs
DRVs & SNPs
|
||||||||||||||||||||
miRNA-target interactions (Predicted by miRanda) |
|
||||||||||||||||||||
DRVs in gene 3'UTRs | |||||||||||||||||||||
SNPs in gene 3'UTRs |
Experimental Support 1 for Functional miRNA-Target Interaction | |||||||
---|---|---|---|---|---|---|---|
miRNA:Target | ---- | ||||||
Validation Method |
|
||||||
Conditions | HEK293 | ||||||
Location of target site | 3'UTR | ||||||
Tools used in this research | TargetScan , miRTarCLIP , Piranha | ||||||
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in GSM545215. RNA binding protein: AGO4. Condition:Control
... - Hafner M; Landthaler M; Burger L; Khorshid et al., 2010, Cell. |
||||||
miRNA-target interactions (Provided by authors) |
|
||||||
Article |
- Hafner M; Landthaler M; Burger L; Khorshid et al. - Cell, 2010
RNA transcripts are subject to posttranscriptional gene regulation involving hundreds of RNA-binding proteins (RBPs) and microRNA-containing ribonucleoprotein complexes (miRNPs) expressed in a cell-type dependent fashion. We developed a cell-based crosslinking approach to determine at high resolution and transcriptome-wide the binding sites of cellular RBPs and miRNPs. The crosslinked sites are revealed by thymidine to cytidine transitions in the cDNAs prepared from immunopurified RNPs of 4-thiouridine-treated cells. We determined the binding sites and regulatory consequences for several intensely studied RBPs and miRNPs, including PUM2, QKI, IGF2BP1-3, AGO/EIF2C1-4 and TNRC6A-C. Our study revealed that these factors bind thousands of sites containing defined sequence motifs and have distinct preferences for exonic versus intronic or coding versus untranslated transcript regions. The precise mapping of binding sites across the transcriptome will be critical to the interpretation of the rapidly emerging data on genetic variation between individuals and how these variations contribute to complex genetic diseases.
LinkOut: [PMID: 20371350]
|
Experimental Support 2 for Functional miRNA-Target Interaction | |||||||
---|---|---|---|---|---|---|---|
miRNA:Target | ---- | ||||||
Validation Method |
|
||||||
Conditions | hESCs (WA-09) | ||||||
Disease | 150726.0 | ||||||
Location of target site | 3'UTR | ||||||
Tools used in this research | TargetScan , miRTarCLIP , Piranha | ||||||
Original Description (Extracted from the article) |
...
"PAR-CLIP data was present in SRR359787. RNA binding protein: AGO2. Condition:4-thiouridine
... - Lipchina I; Elkabetz Y; Hafner M; Sheridan et al., 2011, Genes & development. |
||||||
miRNA-target interactions (Provided by authors) |
|
||||||
Article |
- Lipchina I; Elkabetz Y; Hafner M; Sheridan et al. - Genes & development, 2011
MicroRNAs are important regulators in many cellular processes, including stem cell self-renewal. Recent studies demonstrated their function as pluripotency factors with the capacity for somatic cell reprogramming. However, their role in human embryonic stem (ES) cells (hESCs) remains poorly understood, partially due to the lack of genome-wide strategies to identify their targets. Here, we performed comprehensive microRNA profiling in hESCs and in purified neural and mesenchymal derivatives. Using a combination of AGO cross-linking and microRNA perturbation experiments, together with computational prediction, we identified the targets of the miR-302/367 cluster, the most abundant microRNAs in hESCs. Functional studies identified novel roles of miR-302/367 in maintaining pluripotency and regulating hESC differentiation. We show that in addition to its role in TGF-beta signaling, miR-302/367 promotes bone morphogenetic protein (BMP) signaling by targeting BMP inhibitors TOB2, DAZAP2, and SLAIN1. This study broadens our understanding of microRNA function in hESCs and is a valuable resource for future studies in this area.
LinkOut: [PMID: 22012620]
|
Experimental Support 3 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | HEK293 |
Disease | 150726.0 |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
"PAR-CLIP data was present in GSM1065668. RNA binding protein: AGO1. Condition:4-thiouridine
... - Memczak S; Jens M; Elefsinioti A; Torti F; et al., 2013, Nature. |
Article |
- Memczak S; Jens M; Elefsinioti A; Torti F; et al. - Nature, 2013
Circular RNAs (circRNAs) in animals are an enigmatic class of RNA with unknown function. To explore circRNAs systematically, we sequenced and computationally analysed human, mouse and nematode RNA. We detected thousands of well-expressed, stable circRNAs, often showing tissue/developmental-stage-specific expression. Sequence analysis indicated important regulatory functions for circRNAs. We found that a human circRNA, antisense to the cerebellar degeneration-related protein 1 transcript (CDR1as), is densely bound by microRNA (miRNA) effector complexes and harbours 63 conserved binding sites for the ancient miRNA miR-7. Further analyses indicated that CDR1as functions to bind miR-7 in neuronal tissues. Human CDR1as expression in zebrafish impaired midbrain development, similar to knocking down miR-7, suggesting that CDR1as is a miRNA antagonist with a miRNA-binding capacity ten times higher than any other known transcript. Together, our data provide evidence that circRNAs form a large class of post-transcriptional regulators. Numerous circRNAs form by head-to-tail splicing of exons, suggesting previously unrecognized regulatory potential of coding sequences.
LinkOut: [PMID: 23446348]
|
Experimental Support 4 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | HCT116 |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in ERX177617. RNA binding protein: AGO2. Condition:KO_D_AGO_CLIP_3_7
PAR-CLIP data was present in ERX177599. RNA binding protein: AGO2. Condition:p53_D_AGO_CLIP_2_1
PAR-CLIP data was present in ERX177603. RNA binding protein: AGO2. Condition:p53_D_AGO_CLIP_2_5
PAR-CLIP data was present in ERX177611. RNA binding protein: AGO2. Condition:p53_D_AGO_CLIP_3_1
PAR-CLIP data was present in ERX177615. RNA binding protein: AGO2. Condition:p53_D_AGO_CLIP_3_5
PAR-CLIP data was present in ERX177627. RNA binding protein: AGO2. Condition:p53_D_AGO_CLIP_4_5
PAR-CLIP data was present in ERX177630. RNA binding protein: AGO2. Condition:KO_V_AGO_CLIP_4_8
... - Krell J; Stebbing J; Carissimi C; Dabrowska et al., 2016, Genome research. |
Article |
- Krell J; Stebbing J; Carissimi C; Dabrowska et al. - Genome research, 2016
DNA damage activates TP53-regulated surveillance mechanisms that are crucial in suppressing tumorigenesis. TP53 orchestrates these responses directly by transcriptionally modulating genes, including microRNAs (miRNAs), and by regulating miRNA biogenesis through interacting with the DROSHA complex. However, whether the association between miRNAs and AGO2 is regulated following DNA damage is not yet known. Here, we show that, following DNA damage, TP53 interacts with AGO2 to induce or reduce AGO2's association of a subset of miRNAs, including multiple let-7 family members. Furthermore, we show that specific mutations in TP53 decrease rather than increase the association of let-7 family miRNAs, reducing their activity without preventing TP53 from interacting with AGO2. This is consistent with the oncogenic properties of these mutants. Using AGO2 RIP-seq and PAR-CLIP-seq, we show that the DNA damage-induced increase in binding of let-7 family members to the RISC complex is functional. We unambiguously determine the global miRNA-mRNA interaction networks involved in the DNA damage response, validating them through the identification of miRNA-target chimeras formed by endogenous ligation reactions. We find that the target complementary region of the let-7 seed tends to have highly fixed positions and more variable ones. Additionally, we observe that miRNAs, whose cellular abundance or differential association with AGO2 is regulated by TP53, are involved in an intricate network of regulatory feedback and feedforward circuits. TP53-mediated regulation of AGO2-miRNA interaction represents a new mechanism of miRNA regulation in carcinogenesis.
LinkOut: [PMID: 26701625]
|
Experimental Support 5 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | Prostate Tissue |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in SRX1760639. RNA binding protein: AGO2. Condition:AGO-CLIP-LNCaP-MDV_A
PAR-CLIP data was present in SRX1760583. RNA binding protein: AGO2. Condition:AGO-CLIP-LNCaP_A
PAR-CLIP data was present in SRX1760591. RNA binding protein: AGO2. Condition:AGO-CLIP-LNCaP_B
PAR-CLIP data was present in SRX1760641. RNA binding protein: AGO2. Condition:AGO-CLIP-LNCaP-MDV_B
PAR-CLIP data was present in SRX1760632. RNA binding protein: AGO2. Condition:AGO-CLIP-22RV1_C
... - Hamilton MP; Rajapakshe KI; Bader DA; Cerne et al., 2016, Neoplasia (New York, N.Y.). |
Article |
- Hamilton MP; Rajapakshe KI; Bader DA; Cerne et al. - Neoplasia (New York, N.Y.), 2016
MicroRNA (miRNA) deregulation in prostate cancer (PCa) contributes to PCa initiation and metastatic progression. To comprehensively define the cancer-associated changes in miRNA targeting and function in commonly studied models of PCa, we performed photoactivatable ribonucleoside-enhanced cross-linking immunoprecipitation of the Argonaute protein in a panel of PCa cell lines modeling different stages of PCa progression. Using this comprehensive catalogue of miRNA targets, we analyzed miRNA targeting on known drivers of PCa and examined tissue-specific and stage-specific pathway targeting by miRNAs. We found that androgen receptor is the most frequently targeted PCa oncogene and that miR-148a targets the largest number of known PCa drivers. Globally, tissue-specific and stage-specific changes in miRNA targeting are driven by homeostatic response to active oncogenic pathways. Our findings indicate that, even in advanced PCa, the miRNA pool adapts to regulate continuing alterations in the cancer genome to balance oncogenic molecular changes. These findings are important because they are the first to globally characterize miRNA changes in PCa and demonstrate how the miRNA target spectrum responds to staged tumorigenesis.
LinkOut: [PMID: 27292025]
|
CLIP-seq Support 1 for dataset GSM545215 | |
---|---|
Method / RBP | PAR-CLIP / AGO4 |
Cell line / Condition | HEK293 / Control |
Location of target site | ENST00000295133.5 | 3UTR | AUUCUGUCCCUGCCCUUUGAA |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 20371350 / GSE21578 |
CLIP-seq Viewer | Link |
CLIP-seq Support 2 for dataset SRR359787 | |
---|---|
Method / RBP | PAR-CLIP / AGO2 |
Cell line / Condition | hESCs (WA-09) / 4-thiouridine, RNase T1 |
Location of target site | ENST00000295133.5 | 3UTR | AUUCUGUCCCUGCCCUUUGA |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 22012620 / SRX103431 |
CLIP-seq Viewer | Link |
CLIP-seq Support 3 for dataset GSM1065668 | |
---|---|
Method / RBP | PAR-CLIP / AGO1 |
Cell line / Condition | HEK293 / 4-thiouridine, ML_MM_7 |
Location of target site | ENST00000295133.5 | 3UTR | AUUCUGUCCCUGCCCUUUG |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 23446348 / GSE43573 |
CLIP-seq Viewer | Link |
MiRNA-Target Expression Profile | |||||||
---|---|---|---|---|---|---|---|
|
MiRNA-Target Expression Profile (TCGA) | |||||||
---|---|---|---|---|---|---|---|
|
87 hsa-miR-4436b-3p Target Genes:
Functional analysis:
ID![]() |
Target | Description | Validation methods |
![]() |
![]() |
|||||||
Strong evidence | Less strong evidence | |||||||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||||
MIRT066957 | ATXN7L3B | ataxin 7 like 3B | ![]() |
![]() |
2 | 8 | ||||||
MIRT119284 | NABP1 | nucleic acid binding protein 1 | ![]() |
![]() |
2 | 6 | ||||||
MIRT128915 | KMT2A | lysine methyltransferase 2A | ![]() |
![]() |
2 | 2 | ||||||
MIRT150116 | MIDN | midnolin | ![]() |
![]() |
2 | 2 | ||||||
MIRT173040 | YTHDF3 | YTH N6-methyladenosine RNA binding protein 3 | ![]() |
![]() |
2 | 2 | ||||||
MIRT253117 | BCL2L12 | BCL2 like 12 | ![]() |
![]() |
2 | 2 | ||||||
MIRT256997 | RGMB | repulsive guidance molecule family member b | ![]() |
![]() |
2 | 2 | ||||||
MIRT259746 | SNX12 | sorting nexin 12 | ![]() |
![]() |
2 | 2 | ||||||
MIRT267278 | TMEM109 | transmembrane protein 109 | ![]() |
![]() |
2 | 2 | ||||||
MIRT441934 | C1orf109 | chromosome 1 open reading frame 109 | ![]() |
![]() |
2 | 2 | ||||||
MIRT443625 | CPSF2 | cleavage and polyadenylation specific factor 2 | ![]() |
![]() |
2 | 2 | ||||||
MIRT445757 | AGO1 | argonaute 1, RISC catalytic component | ![]() |
![]() |
2 | 2 | ||||||
MIRT447835 | CTIF | cap binding complex dependent translation initiation factor | ![]() |
![]() |
2 | 2 | ||||||
MIRT451230 | ZNF444 | zinc finger protein 444 | ![]() |
![]() |
2 | 2 | ||||||
MIRT451966 | TMPRSS5 | transmembrane protease, serine 5 | ![]() |
![]() |
2 | 2 | ||||||
MIRT453127 | HOXC4 | homeobox C4 | ![]() |
![]() |
2 | 2 | ||||||
MIRT454604 | RPL13A | ribosomal protein L13a | ![]() |
![]() |
2 | 2 | ||||||
MIRT455176 | SUV39H1 | suppressor of variegation 3-9 homolog 1 | ![]() |
![]() |
2 | 2 | ||||||
MIRT455547 | GJB1 | gap junction protein beta 1 | ![]() |
![]() |
2 | 2 | ||||||
MIRT458197 | ATP6V0A2 | ATPase H+ transporting V0 subunit a2 | ![]() |
![]() |
2 | 2 | ||||||
MIRT458356 | NOC2L | NOC2 like nucleolar associated transcriptional repressor | ![]() |
![]() |
2 | 2 | ||||||
MIRT458923 | DNM2 | dynamin 2 | ![]() |
![]() |
2 | 2 | ||||||
MIRT461013 | SYT7 | synaptotagmin 7 | ![]() |
![]() |
2 | 2 | ||||||
MIRT461643 | ZSWIM4 | zinc finger SWIM-type containing 4 | ![]() |
![]() |
2 | 2 | ||||||
MIRT461997 | PACSIN1 | protein kinase C and casein kinase substrate in neurons 1 | ![]() |
![]() |
2 | 2 | ||||||
MIRT462367 | BCL7B | BCL tumor suppressor 7B | ![]() |
![]() |
2 | 2 | ||||||
MIRT464915 | TXNIP | thioredoxin interacting protein | ![]() |
![]() |
2 | 2 | ||||||
MIRT466311 | TIMM22 | translocase of inner mitochondrial membrane 22 | ![]() |
![]() |
2 | 2 | ||||||
MIRT466591 | TBC1D2B | TBC1 domain family member 2B | ![]() |
![]() |
2 | 2 | ||||||
MIRT467045 | SRSF1 | serine and arginine rich splicing factor 1 | ![]() |
![]() |
2 | 2 | ||||||
MIRT468750 | SDC2 | syndecan 2 | ![]() |
![]() |
2 | 2 | ||||||
MIRT468943 | RPS24 | ribosomal protein S24 | ![]() |
![]() |
2 | 2 | ||||||
MIRT469474 | REEP5 | receptor accessory protein 5 | ![]() |
![]() |
2 | 2 | ||||||
MIRT469913 | PTRF | caveolae associated protein 1 | ![]() |
![]() |
2 | 2 | ||||||
MIRT473325 | MEX3A | mex-3 RNA binding family member A | ![]() |
![]() |
2 | 2 | ||||||
MIRT473643 | MARK2 | microtubule affinity regulating kinase 2 | ![]() |
![]() |
2 | 2 | ||||||
MIRT474064 | LMNB2 | lamin B2 | ![]() |
![]() |
2 | 2 | ||||||
MIRT474357 | KMT2D | lysine methyltransferase 2D | ![]() |
![]() |
2 | 2 | ||||||
MIRT475394 | ICMT | isoprenylcysteine carboxyl methyltransferase | ![]() |
![]() |
2 | 4 | ||||||
MIRT476335 | GLTSCR1L | BRD4 interacting chromatin remodeling complex associated protein like | ![]() |
![]() |
2 | 2 | ||||||
MIRT478651 | CTDNEP1 | CTD nuclear envelope phosphatase 1 | ![]() |
![]() |
2 | 2 | ||||||
MIRT479585 | CDC42SE1 | CDC42 small effector 1 | ![]() |
![]() |
2 | 2 | ||||||
MIRT479943 | CBX5 | chromobox 5 | ![]() |
![]() |
2 | 2 | ||||||
MIRT482001 | AMOTL2 | angiomotin like 2 | ![]() |
![]() |
2 | 2 | ||||||
MIRT482043 | AMER1 | APC membrane recruitment protein 1 | ![]() |
![]() |
2 | 2 | ||||||
MIRT483070 | EXT2 | exostosin glycosyltransferase 2 | ![]() |
![]() |
2 | 6 | ||||||
MIRT484323 | KCNH1 | potassium voltage-gated channel subfamily H member 1 | ![]() |
![]() |
2 | 4 | ||||||
MIRT487528 | GXYLT2 | glucoside xylosyltransferase 2 | ![]() |
![]() |
2 | 2 | ||||||
MIRT489636 | ALS2CL | ALS2 C-terminal like | ![]() |
![]() |
2 | 2 | ||||||
MIRT490693 | SSTR1 | somatostatin receptor 1 | ![]() |
![]() |
2 | 2 | ||||||
MIRT490871 | UPK2 | uroplakin 2 | ![]() |
![]() |
2 | 2 | ||||||
MIRT492582 | PPM1L | protein phosphatase, Mg2+/Mn2+ dependent 1L | ![]() |
![]() |
2 | 2 | ||||||
MIRT492945 | NEUROD2 | neuronal differentiation 2 | ![]() |
![]() |
2 | 2 | ||||||
MIRT498675 | SOD2 | superoxide dismutase 2 | ![]() |
![]() |
2 | 4 | ||||||
MIRT499349 | RAB25 | RAB25, member RAS oncogene family | ![]() |
![]() |
2 | 2 | ||||||
MIRT502338 | GIGYF1 | GRB10 interacting GYF protein 1 | ![]() |
![]() |
2 | 4 | ||||||
MIRT502976 | CCNL1 | cyclin L1 | ![]() |
![]() |
2 | 8 | ||||||
MIRT503706 | NUP62 | nucleoporin 62 | ![]() |
![]() |
2 | 2 | ||||||
MIRT505567 | SMUG1 | single-strand-selective monofunctional uracil-DNA glycosylase 1 | ![]() |
![]() |
2 | 2 | ||||||
MIRT507808 | CDKN1B | cyclin dependent kinase inhibitor 1B | ![]() |
![]() |
2 | 2 | ||||||
MIRT513242 | FBXO41 | F-box protein 41 | ![]() |
![]() |
2 | 6 | ||||||
MIRT513586 | EVX1 | even-skipped homeobox 1 | ![]() |
![]() |
2 | 2 | ||||||
MIRT525036 | FRK | fyn related Src family tyrosine kinase | ![]() |
![]() |
2 | 2 | ||||||
MIRT531035 | TDGF1P3 | teratocarcinoma-derived growth factor 1 pseudogene 3 | ![]() |
![]() |
2 | 2 | ||||||
MIRT531939 | RBMS2 | RNA binding motif single stranded interacting protein 2 | ![]() |
![]() |
2 | 2 | ||||||
MIRT534912 | PUM2 | pumilio RNA binding family member 2 | ![]() |
![]() |
2 | 2 | ||||||
MIRT535717 | N4BP1 | NEDD4 binding protein 1 | ![]() |
![]() |
2 | 2 | ||||||
MIRT540498 | ZMAT4 | zinc finger matrin-type 4 | ![]() |
![]() |
2 | 4 | ||||||
MIRT541465 | AURKA | aurora kinase A | ![]() |
![]() |
2 | 2 | ||||||
MIRT554328 | SH3GLB1 | SH3 domain containing GRB2 like, endophilin B1 | ![]() |
![]() |
2 | 2 | ||||||
MIRT561572 | SLC6A9 | solute carrier family 6 member 9 | ![]() |
![]() |
2 | 2 | ||||||
MIRT564715 | ZNF322P1 | zinc finger protein 322 pseudogene 1 | ![]() |
![]() |
2 | 2 | ||||||
MIRT576176 | Hmox1 | heme oxygenase 1 | ![]() |
![]() |
2 | 2 | ||||||
MIRT629712 | XKR4 | XK related 4 | ![]() |
![]() |
2 | 2 | ||||||
MIRT636182 | THBD | thrombomodulin | ![]() |
![]() |
2 | 2 | ||||||
MIRT646315 | MPHOSPH8 | M-phase phosphoprotein 8 | ![]() |
![]() |
2 | 2 | ||||||
MIRT649174 | IQSEC1 | IQ motif and Sec7 domain 1 | ![]() |
![]() |
2 | 2 | ||||||
MIRT666945 | PMEPA1 | prostate transmembrane protein, androgen induced 1 | ![]() |
![]() |
2 | 2 | ||||||
MIRT684057 | FOLR1 | folate receptor 1 | ![]() |
![]() |
2 | 2 | ||||||
MIRT687585 | MAU2 | MAU2 sister chromatid cohesion factor | ![]() |
![]() |
2 | 2 | ||||||
MIRT689953 | ZNF185 | zinc finger protein 185 with LIM domain | ![]() |
![]() |
2 | 2 | ||||||
MIRT704071 | SRCAP | Snf2 related CREBBP activator protein | ![]() |
![]() |
2 | 2 | ||||||
MIRT704327 | DCUN1D5 | defective in cullin neddylation 1 domain containing 5 | ![]() |
![]() |
2 | 2 | ||||||
MIRT705406 | ATP1B3 | ATPase Na+/K+ transporting subunit beta 3 | ![]() |
![]() |
2 | 2 | ||||||
MIRT710488 | CDH5 | cadherin 5 | ![]() |
![]() |
2 | 2 | ||||||
MIRT718241 | LCE1A | late cornified envelope 1A | ![]() |
![]() |
2 | 2 | ||||||
MIRT723182 | CDCA4 | cell division cycle associated 4 | ![]() |
![]() |
2 | 2 |