pre-miRNA Information | |
---|---|
pre-miRNA | hsa-mir-4464 |
Genomic Coordinates | chr6: 90312742 - 90312833 |
Description | Homo sapiens miR-4464 stem-loop |
Comment | None |
RNA Secondary Structure | ![]() |
Mature miRNA Information | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mature miRNA | hsa-miR-4464 | |||||||||||||||||||||||||||||||||||
Sequence | 12| AAGGUUUGGAUAGAUGCAAUA |32 | |||||||||||||||||||||||||||||||||||
Evidence | Experimental | |||||||||||||||||||||||||||||||||||
Experiments | Illumina | |||||||||||||||||||||||||||||||||||
Editing Events in miRNAs |
|
|||||||||||||||||||||||||||||||||||
SNPs in miRNA |
|
|||||||||||||||||||||||||||||||||||
Putative Targets |
Gene Information | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gene Symbol | FBXO41 | ||||||||||||||||||||
Synonyms | FBX41 | ||||||||||||||||||||
Description | F-box protein 41 | ||||||||||||||||||||
Transcript | NM_001080410 | ||||||||||||||||||||
Expression | |||||||||||||||||||||
Putative miRNA Targets on FBXO41 | |||||||||||||||||||||
3'UTR of FBXO41 (miRNA target sites are highlighted) |
>FBXO41|NM_001080410|3'UTR 1 CCCGGGTAGGGGGCGGCAGGGCCCCTGCCAGCCCCACACCAGGGCACTCTCTTTGGACCTCAGAGGGACCCTGGTTTGGA 81 CTAGACCTTTGGAGGCCGAGTGTTATCCCTGGCTTCTGGAGGGGGACTGTCAAGTCTCCTGTCCTCCTCCTGGAGCAGCA 161 GAGCAACAGGCCTGACCCAGGGCACTGCCTCCCCAGTACAGGGGCTTGGACAGAAGCTGCCCTCCGACCCCCACCCTACC 241 CCGGCTGGAGTAGCCTCTGGCACAGCCAGTGAGGAGCTGTCACCACCAGCGCCTGGTGTCATCACCTGGAGGATCTGCAA 321 TAACCACCCAGTGGCTCCTCAGCTGTTCTGGCTGGCCTCTCCTTCCTGAGGCCCAGCCTCCTGGTCAGGAGCATCTGGGG 401 CCCCAAGCCAATGGGGGCTCCACAAGGCAGCTCAGACTTGGCAAGGAGGGCTCTTCTCCTCAACCTTGCTGCAGCCTTCT 481 GGGGGCACCCCTTCAGACAGCCTGCCCAGGCTGTGGATCCACATTTCCTGGGGGTACCACAGCCAGACCTAGGGGCCTGG 561 GCACGTGGTCAGCCAAAAGCTGGGGGCAGCAGTACAGTGGGGTAGTGGGGGTGGGTTTGGAAAGGAAACAGTCACCCAGA 641 ACTTCTCCCCAGGATGAGACCACCCTTCCAAGGTGGGGGATTGCCAGGGGGAGAAAACTTATTTATTGCTGTAAGACAGG 721 ACCCCTCCTCCCAACCTCATACCCCACCGCACACCAGAGCTAAATTCAAAGCTGAAAGGCGCACGTTTCTATACCTACAT 801 TCATTCCTGAGGGACCCTCCAGAGGGTCAAGGTCCCAGCCCCAGGCAGCCCTGTCACAGTGAGAAGTAGTTCCTGTCCTT 881 AAGGAATTTCCTTCTAATCCAGGTGCTTGGGCAGGAACCCGATGGCCTTCGGGTCACCAAGGCTGTCTGGGAGGGAGGCA 961 CAGGGCCGCCCTCTGTGCTGAGGCCGTGGAGGAAGCCAGGAGGAGGGTGGCTTGCTTTGCTTCCTTGTCTAATTAGCTTG 1041 CTTGAAGATGTGGCCTTGGCAGGGAGCCAGACCCATGGGGCCAAGGAAGAGGAAGAGCATCCTCAATAGACTCACTCCCC 1121 CTTCCTTGGTCTCCACGGGCCCCGTGGACTGAGGGCTGCATTGGGGTCTTCTGCCTAGGGGAAGTGCTGGACCTGAGCTG 1201 GAGCCACTTGGCTTAGAAGCCACAGGATTCACTTTTCACTGGCCTTTGCAGTCCCCAAAGGATCAGGTCTCAGAACCAAG 1281 GCTCCAAAGGCTGAGGTCTCCCCAGTTCCTCCTCTCAGAACTCCCACAGTAGCTCAGAGGCCGGGGGTCCTGCCAACTTT 1361 CATTTGGAAAGTTCTTTCGAACATCTAAACTAGATCTATCTTAGGGTTTCTTTCTCTCCTAGATAGGATCAGCTCCCAGC 1441 CCTAGCCATTAGGCTGCTGGTCCTGGCGGGGGATGGGGTCCCCTCGTTACCCAGTCCTTCCCAGGGACCCAACTTCCTAA 1521 CACAACCTGGCTTGGACATGAAGACCCTCCCCCAGGTTACCTTGTAAAGAGTCCTCCAGAGCTGGGATCCCATGGGCGCA 1601 GCAGCACACCCAGCTCCCATGGCGTCACTCCCTAGCTCTGTCCCAGCTTTTGCTATCATTGCTGACTTTTCCTCCTGTGG 1681 CTCATTCTGTCCCTGCCCTTTGAAAACCTAAAATACCAAGGGTGTCATGCTGGCAACTCCCTGCCCAGTCCTGCACAAAG 1761 CCTTGGCTGTGTGTGGCACCCCTTGCCTCCTACCCCAGAGCAGCTGGCTCCATTGGCTTCTCCCTGCACCAGCCCTGTCC 1841 TCAGGGGTCAGGAAAAAGCAGCACAGCTTTCTTTCCTCTCCTCCAGAGGCCTGGAAGGGAGGTGGAGGTCCAGTAAGGGC 1921 CTGGCTGCCTTGGATTTCTTGGTCCTGCCTTGCCAACTGCACCCTGTAGCTCCTGCTCCCTGTGACCCCAGAACCAGAGG 2001 TGCTGCCTTCCCTGTCTCCTAGACAAAGCACAAAGGGATGCCCTGCTTGGCTTGAGCCTGCCCAACTGAAGGATTTTCTC 2081 TGCCCCAGGGACCTTCCATCCCTGAATACAAGGCTCTAGGCAACTTCTCTCTGGGTGGTACACACTAGAATGCCTGGCAT 2161 TAGCCCTAGAAAGGAGGTTGGGGTGTATGGGTAGTGAGCTAGGGTGGGAGAAAGGTGGTGCTGAAAGGACAGATGCTAGT 2241 TGTAGTTTCACTCACTCATTCATTCATTAGTGCAACAGTACTGAGCACCACCTGCACTAGAGGCAGAGGGGTGAACAAGA 2321 TACCCTTCTGCCTGGGGGGACGTCCACTTCCCATGGGTTTGGCTATTTCCAGGAAAGCCCCTCAGTCCTCCACCCTGTTC 2401 TGGCTGTGTGTGAAGGATGTGTGTGAGCAGGCCCAATCCTTTGCAGCAAGAATGAGAGGTCAGAGTATTCCATTGCACAC 2481 GCACCCTGGGGCTGACAGACTTGTGCCCCCTAGCCTTCATGCATGCCCAAGCACTGGCAGCTTTGCAGCCCCTGCCCCAC 2561 CAGCCCCTTGACGCTCTTCTTTTGTTCTCTCCTCGGGGATGAGCTCTGCTGCTGAGTAGGGAGCTTTTGCTTGCTGGGAG 2641 GCTCTATGCATGGATTTTTTTGGTGACCATACAGCTAGGGCTGAGGATGGGAACAGGGACAGAGGGCCTGGCTATCCCTA 2721 GAAGCACTTCATCCATCTTTACCCACCCAAACGGGATCCCTTCACATCTCATACCCAGTAAGATGCAAGAAAGGAATATC 2801 TGAGAGCAAGCAGCCCTGCTCCAGGGGCCCCAGGTATGTGTAGAGGCCCAGTGGGGGTGGCCACTTGGTGTTTCTACCAC 2881 CCCCTGCCATCCAGTCTGGCCCCAGTACCTACCTGGGAGGTTGGTGTACTTGGCTTAAGTACTTCATGCTTTATTCAGGC 2961 TGCTTCCCCACAGCACCGGCAGGAAATGAAGGTGCACTTATATGCATCCCTGCAGGAATAAAGAGTGGGTGGCCTGCCCA 3041 GCCCAGCACCACAGCCTTTCCCCAGCCAGGAGAGACCACCTAAGGATCAAGGCAGCTCCTGTTTTCTTGGTTCTGTGACA 3121 CTCGAGTCTGAGCCAGCCCCTCAGGAATTGCCTCAAAAGAGAAAAACAAAAAAAAGTCCTCCTTCCCAAGGCCTGCTACT 3201 CCAAGGTTTGGCTCCATCCCTTGCCTTTGGGTCCTGCCTATTTCCCCACTCCTGGTCTCTTATCTTTGGGGCCACCAGTG 3281 GGGAGTCACCCGGGCCCCAATCCCTCTAAGGCGCTAAGTTGAAGGAGGCCTTCCCAGAGTGACTATTGGTGCCAAAGTCC 3361 CAGTTCCTGTTGGACTTGGGGTAAAAACAGGAGATGGTGAGTGGGTGTAAGGCCCAAATGCCCAGAGAAGTTAACTCGAA 3441 CCCATGGGACCTGTCCCAGCCTGTCAGTCCCTGATGAGTGTAACTTCCTTCCCCTGGGGGCCTGGCCCTTCTCTCCAACC 3521 CAGTGGCCATGCTTTCTCACCCAGCCTTGTGCCCGGCCTGCATTTCTGTATATATTGCTGTGTATTGTGTGTATGTATGT 3601 ATTCCTGGACAAGTGTGTTCATCTGCAGCCCTTGCCTGAGGATAAGGTTTAGGATTGGGTAAAGATCAGAATACCAGGGC 3681 CAGCTAAGGCAACGACTCCCTCCCCAAACCCTTGGGACCTCAGCCAGTCCCAAGGCTGCCCTGACAATCAGGCAGGCTCC 3761 CCACCGTGAGGCCAAGCCTCCTCTGCCACTGCCAGCATGGCCCAAGGGAGGCTTGGCCTTGGGCTTGCCAGCCTCAGCTC 3841 TGCCCTGACAAGGGTCTTGTATCCAGGGCAGAGGCCTGAGGTGACCCAGGCTTGCTTTGTGGCTGATGCCAGCAGGCTTG 3921 GTTCTAGTGGGCACCACTGGTGGGCAACCTCCATAACTGGCCCTTAGGCCCTACCTTCCTACACAGCTAGGCTATAATGG 4001 GCCTGAGTGAGAGGGTAGCTTCCCCAGCCCCAAGCACAGGCAGAGGGGTGGAGAGCAATTTTTGGTTTTATTTTTGTTTC 4081 TGAAGTGGTGCCTGTACCTCCAGCCCCCAGGGGGCCTTCCCTGGCCACACTTCTCTGCCCCACCCAGGCATCGCCATCCC 4161 AGCACTTTGCTCCATGTCACCCGTAAGATGCCCTTTGCTGAATGTACCTGAGTGTATGTATTTAAAAGGACTCACATGGG 4241 CATCAGAGAATTTATGGCTCTGTATCCAATAAAAAAGATGGTGAAACTGGTCTATCTGCCAAAAAAAAAAA Target sites
Provided by authors
Predicted by miRanda
DRVs
SNPs
DRVs & SNPs
|
||||||||||||||||||||
miRNA-target interactions (Predicted by miRanda) |
|
||||||||||||||||||||
DRVs in gene 3'UTRs | |||||||||||||||||||||
SNPs in gene 3'UTRs |
Experimental Support 1 for Functional miRNA-Target Interaction | |||||||
---|---|---|---|---|---|---|---|
miRNA:Target | ---- | ||||||
Validation Method |
|
||||||
Conditions | HEK293 | ||||||
Location of target site | 3'UTR | ||||||
Tools used in this research | TargetScan , miRTarCLIP , Piranha | ||||||
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in GSM545215. RNA binding protein: AGO4. Condition:Control
... - Hafner M; Landthaler M; Burger L; Khorshid et al., 2010, Cell. |
||||||
miRNA-target interactions (Provided by authors) |
|
||||||
Article |
- Hafner M; Landthaler M; Burger L; Khorshid et al. - Cell, 2010
RNA transcripts are subject to posttranscriptional gene regulation involving hundreds of RNA-binding proteins (RBPs) and microRNA-containing ribonucleoprotein complexes (miRNPs) expressed in a cell-type dependent fashion. We developed a cell-based crosslinking approach to determine at high resolution and transcriptome-wide the binding sites of cellular RBPs and miRNPs. The crosslinked sites are revealed by thymidine to cytidine transitions in the cDNAs prepared from immunopurified RNPs of 4-thiouridine-treated cells. We determined the binding sites and regulatory consequences for several intensely studied RBPs and miRNPs, including PUM2, QKI, IGF2BP1-3, AGO/EIF2C1-4 and TNRC6A-C. Our study revealed that these factors bind thousands of sites containing defined sequence motifs and have distinct preferences for exonic versus intronic or coding versus untranslated transcript regions. The precise mapping of binding sites across the transcriptome will be critical to the interpretation of the rapidly emerging data on genetic variation between individuals and how these variations contribute to complex genetic diseases.
LinkOut: [PMID: 20371350]
|
Experimental Support 2 for Functional miRNA-Target Interaction | |||||||
---|---|---|---|---|---|---|---|
miRNA:Target | ---- | ||||||
Validation Method |
|
||||||
Conditions | HCT116 | ||||||
Location of target site | 3'UTR | ||||||
Tools used in this research | TargetScan , miRTarCLIP , Piranha | ||||||
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in ERX177617. RNA binding protein: AGO2. Condition:KO_D_AGO_CLIP_3_7
... - Krell J; Stebbing J; Carissimi C; Dabrowska et al., 2016, Genome research. |
||||||
miRNA-target interactions (Provided by authors) |
|
||||||
Article |
- Krell J; Stebbing J; Carissimi C; Dabrowska et al. - Genome research, 2016
DNA damage activates TP53-regulated surveillance mechanisms that are crucial in suppressing tumorigenesis. TP53 orchestrates these responses directly by transcriptionally modulating genes, including microRNAs (miRNAs), and by regulating miRNA biogenesis through interacting with the DROSHA complex. However, whether the association between miRNAs and AGO2 is regulated following DNA damage is not yet known. Here, we show that, following DNA damage, TP53 interacts with AGO2 to induce or reduce AGO2's association of a subset of miRNAs, including multiple let-7 family members. Furthermore, we show that specific mutations in TP53 decrease rather than increase the association of let-7 family miRNAs, reducing their activity without preventing TP53 from interacting with AGO2. This is consistent with the oncogenic properties of these mutants. Using AGO2 RIP-seq and PAR-CLIP-seq, we show that the DNA damage-induced increase in binding of let-7 family members to the RISC complex is functional. We unambiguously determine the global miRNA-mRNA interaction networks involved in the DNA damage response, validating them through the identification of miRNA-target chimeras formed by endogenous ligation reactions. We find that the target complementary region of the let-7 seed tends to have highly fixed positions and more variable ones. Additionally, we observe that miRNAs, whose cellular abundance or differential association with AGO2 is regulated by TP53, are involved in an intricate network of regulatory feedback and feedforward circuits. TP53-mediated regulation of AGO2-miRNA interaction represents a new mechanism of miRNA regulation in carcinogenesis.
LinkOut: [PMID: 26701625]
|
Experimental Support 3 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | Prostate Tissue |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
PAR-CLIP data was present in SRX1760639. RNA binding protein: AGO2. Condition:AGO-CLIP-LNCaP-MDV_A
PAR-CLIP data was present in SRX1760632. RNA binding protein: AGO2. Condition:AGO-CLIP-22RV1_C
... - Hamilton MP; Rajapakshe KI; Bader DA; Cerne et al., 2016, Neoplasia (New York, N.Y.). |
Article |
- Hamilton MP; Rajapakshe KI; Bader DA; Cerne et al. - Neoplasia (New York, N.Y.), 2016
MicroRNA (miRNA) deregulation in prostate cancer (PCa) contributes to PCa initiation and metastatic progression. To comprehensively define the cancer-associated changes in miRNA targeting and function in commonly studied models of PCa, we performed photoactivatable ribonucleoside-enhanced cross-linking immunoprecipitation of the Argonaute protein in a panel of PCa cell lines modeling different stages of PCa progression. Using this comprehensive catalogue of miRNA targets, we analyzed miRNA targeting on known drivers of PCa and examined tissue-specific and stage-specific pathway targeting by miRNAs. We found that androgen receptor is the most frequently targeted PCa oncogene and that miR-148a targets the largest number of known PCa drivers. Globally, tissue-specific and stage-specific changes in miRNA targeting are driven by homeostatic response to active oncogenic pathways. Our findings indicate that, even in advanced PCa, the miRNA pool adapts to regulate continuing alterations in the cancer genome to balance oncogenic molecular changes. These findings are important because they are the first to globally characterize miRNA changes in PCa and demonstrate how the miRNA target spectrum responds to staged tumorigenesis.
LinkOut: [PMID: 27292025]
|
CLIP-seq Support 1 for dataset GSM545215 | |
---|---|
Method / RBP | PAR-CLIP / AGO4 |
Cell line / Condition | HEK293 / Control |
Location of target site | ENST00000295133.5 | 3UTR | AUUCUGUCCCUGCCCUUUGAA |
Tools used in this analysis | TargetScan, miRTarCLIP, and Piranha |
Article / Accession Series | PMID: 20371350 / GSE21578 |
CLIP-seq Viewer | Link |
MiRNA-Target Expression Profile | |||||||
---|---|---|---|---|---|---|---|
|
MiRNA-Target Expression Profile (TCGA) | |||||||
---|---|---|---|---|---|---|---|
|
81 hsa-miR-4464 Target Genes:
Functional analysis:
ID![]() |
Target | Description | Validation methods |
![]() |
![]() |
|||||||
Strong evidence | Less strong evidence | |||||||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||||
MIRT056004 | ARL5B | ADP ribosylation factor like GTPase 5B | ![]() |
![]() |
2 | 2 | ||||||
MIRT061568 | BTG2 | BTG anti-proliferation factor 2 | ![]() |
![]() |
2 | 2 | ||||||
MIRT078651 | ICT1 | mitochondrial ribosomal protein L58 | ![]() |
![]() |
2 | 2 | ||||||
MIRT087551 | YWHAH | tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein eta | ![]() |
![]() |
2 | 4 | ||||||
MIRT088139 | SEPT2 | septin 2 | ![]() |
![]() |
2 | 4 | ||||||
MIRT095089 | SEC24A | SEC24 homolog A, COPII coat complex component | ![]() |
![]() |
2 | 4 | ||||||
MIRT099065 | FOXC1 | forkhead box C1 | ![]() |
![]() |
2 | 4 | ||||||
MIRT150194 | MIDN | midnolin | ![]() |
![]() |
2 | 2 | ||||||
MIRT178173 | EIF5AL1 | eukaryotic translation initiation factor 5A-like 1 | ![]() |
![]() |
2 | 4 | ||||||
MIRT178942 | C11ORF57 | chromosome 11 open reading frame 57 | ![]() |
![]() |
2 | 2 | ||||||
MIRT188776 | SESN2 | sestrin 2 | ![]() |
![]() |
2 | 2 | ||||||
MIRT267026 | EFHD2 | EF-hand domain family member D2 | ![]() |
![]() |
2 | 2 | ||||||
MIRT307213 | ACVR2B | activin A receptor type 2B | ![]() |
![]() |
2 | 2 | ||||||
MIRT324750 | ACER2 | alkaline ceramidase 2 | ![]() |
![]() |
2 | 2 | ||||||
MIRT442732 | TEAD1 | TEA domain transcription factor 1 | ![]() |
![]() |
2 | 2 | ||||||
MIRT444087 | C12orf73 | chromosome 12 open reading frame 73 | ![]() |
![]() |
2 | 2 | ||||||
MIRT445527 | KLF9 | Kruppel like factor 9 | ![]() |
![]() |
2 | 2 | ||||||
MIRT449604 | INIP | INTS3 and NABP interacting protein | ![]() |
![]() |
2 | 2 | ||||||
MIRT451129 | ZNF99 | zinc finger protein 99 | ![]() |
![]() |
2 | 2 | ||||||
MIRT452271 | RPL30 | ribosomal protein L30 | ![]() |
![]() |
2 | 2 | ||||||
MIRT452486 | DDX4 | DEAD-box helicase 4 | ![]() |
![]() |
2 | 2 | ||||||
MIRT454868 | DNAJC15 | DnaJ heat shock protein family (Hsp40) member C15 | ![]() |
![]() |
2 | 6 | ||||||
MIRT455773 | TSPAN6 | tetraspanin 6 | ![]() |
![]() |
2 | 4 | ||||||
MIRT463844 | WRN | Werner syndrome RecQ like helicase | ![]() |
![]() |
2 | 2 | ||||||
MIRT465036 | TTC39C | tetratricopeptide repeat domain 39C | ![]() |
![]() |
2 | 2 | ||||||
MIRT465176 | TRPV2 | transient receptor potential cation channel subfamily V member 2 | ![]() |
![]() |
2 | 4 | ||||||
MIRT465294 | TRIB3 | tribbles pseudokinase 3 | ![]() |
![]() |
2 | 4 | ||||||
MIRT467931 | SLC16A7 | solute carrier family 16 member 7 | ![]() |
![]() |
2 | 2 | ||||||
MIRT471906 | NUAK2 | NUAK family kinase 2 | ![]() |
![]() |
2 | 2 | ||||||
MIRT472724 | MTUS1 | microtubule associated scaffold protein 1 | ![]() |
![]() |
2 | 6 | ||||||
MIRT479785 | CCND1 | cyclin D1 | ![]() |
![]() |
2 | 2 | ||||||
MIRT482446 | ADM | adrenomedullin | ![]() |
![]() |
2 | 10 | ||||||
MIRT485365 | MYLIP | myosin regulatory light chain interacting protein | ![]() |
![]() |
2 | 12 | ||||||
MIRT498399 | KIF6 | kinesin family member 6 | ![]() |
![]() |
2 | 2 | ||||||
MIRT503202 | ACTB | actin beta | ![]() |
![]() |
2 | 6 | ||||||
MIRT503819 | TMEM242 | transmembrane protein 242 | ![]() |
![]() |
2 | 2 | ||||||
MIRT504706 | ZNF117 | zinc finger protein 117 | ![]() |
![]() |
2 | 2 | ||||||
MIRT507802 | CDKN1B | cyclin dependent kinase inhibitor 1B | ![]() |
![]() |
2 | 2 | ||||||
MIRT509968 | KANSL1L | KAT8 regulatory NSL complex subunit 1 like | ![]() |
![]() |
2 | 4 | ||||||
MIRT517306 | ELF4 | E74 like ETS transcription factor 4 | ![]() |
![]() |
2 | 6 | ||||||
MIRT523900 | ENPP6 | ectonucleotide pyrophosphatase/phosphodiesterase 6 | ![]() |
![]() |
2 | 6 | ||||||
MIRT532018 | NOX5 | NADPH oxidase 5 | ![]() |
![]() |
2 | 2 | ||||||
MIRT535334 | PHACTR2 | phosphatase and actin regulator 2 | ![]() |
![]() |
2 | 2 | ||||||
MIRT536944 | HCN4 | hyperpolarization activated cyclic nucleotide gated potassium channel 4 | ![]() |
![]() |
2 | 4 | ||||||
MIRT539322 | AHSA2 | activator of HSP90 ATPase homolog 2 | ![]() |
![]() |
2 | 2 | ||||||
MIRT540189 | GSTM4 | glutathione S-transferase mu 4 | ![]() |
![]() |
2 | 2 | ||||||
MIRT545015 | ZNF439 | zinc finger protein 439 | ![]() |
![]() |
2 | 2 | ||||||
MIRT545265 | TRIM36 | tripartite motif containing 36 | ![]() |
![]() |
2 | 4 | ||||||
MIRT547230 | PAG1 | phosphoprotein membrane anchor with glycosphingolipid microdomains 1 | ![]() |
![]() |
2 | 4 | ||||||
MIRT548425 | ELOVL5 | ELOVL fatty acid elongase 5 | ![]() |
![]() |
2 | 2 | ||||||
MIRT549910 | ADH4 | alcohol dehydrogenase 4 (class II), pi polypeptide | ![]() |
![]() |
2 | 2 | ||||||
MIRT550185 | TMEM106C | transmembrane protein 106C | ![]() |
![]() |
2 | 2 | ||||||
MIRT550775 | ENOX2 | ecto-NOX disulfide-thiol exchanger 2 | ![]() |
![]() |
2 | 4 | ||||||
MIRT552401 | ZNF487P | zinc finger protein 487 | ![]() |
1 | 1 | |||||||
MIRT554782 | RHEBP1 | RHEB pseudogene 1 | ![]() |
![]() |
2 | 4 | ||||||
MIRT557311 | HIF1A | hypoxia inducible factor 1 alpha subunit | ![]() |
![]() |
2 | 2 | ||||||
MIRT558635 | CNNM2 | cyclin and CBS domain divalent metal cation transport mediator 2 | ![]() |
![]() |
2 | 2 | ||||||
MIRT563168 | RPS14 | ribosomal protein S14 | ![]() |
![]() |
2 | 2 | ||||||
MIRT564886 | YWHAE | tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon | ![]() |
![]() |
2 | 2 | ||||||
MIRT565778 | SEPHS1 | selenophosphate synthetase 1 | ![]() |
![]() |
2 | 2 | ||||||
MIRT566480 | PDCD4 | programmed cell death 4 | ![]() |
![]() |
2 | 2 | ||||||
MIRT567206 | IGFBP5 | insulin like growth factor binding protein 5 | ![]() |
![]() |
2 | 2 | ||||||
MIRT568931 | SMCR8 | Smith-Magenis syndrome chromosome region, candidate 8 | ![]() |
![]() |
2 | 2 | ||||||
MIRT570698 | FBXO41 | F-box protein 41 | ![]() |
![]() |
2 | 2 | ||||||
MIRT573474 | MTRNR2L9 | MT-RNR2-like 9 | ![]() |
![]() |
2 | 2 | ||||||
MIRT576170 | Hmox1 | heme oxygenase 1 | ![]() |
![]() |
2 | 2 | ||||||
MIRT607555 | GLI2 | GLI family zinc finger 2 | ![]() |
![]() |
2 | 2 | ||||||
MIRT608203 | ERBB2 | erb-b2 receptor tyrosine kinase 2 | ![]() |
![]() |
2 | 2 | ||||||
MIRT609779 | VWC2L | von Willebrand factor C domain containing protein 2 like | ![]() |
![]() |
2 | 4 | ||||||
MIRT616312 | CELF2 | CUGBP Elav-like family member 2 | ![]() |
![]() |
2 | 2 | ||||||
MIRT617190 | CDH13 | cadherin 13 | ![]() |
![]() |
2 | 2 | ||||||
MIRT626842 | RPLP1 | ribosomal protein lateral stalk subunit P1 | ![]() |
![]() |
2 | 2 | ||||||
MIRT636438 | MARCH1 | membrane associated ring-CH-type finger 1 | ![]() |
![]() |
2 | 2 | ||||||
MIRT639101 | GLIPR1L2 | GLI pathogenesis related 1 like 2 | ![]() |
![]() |
2 | 2 | ||||||
MIRT691018 | CRTC3 | CREB regulated transcription coactivator 3 | ![]() |
![]() |
2 | 2 | ||||||
MIRT700008 | RPS21 | ribosomal protein S21 | ![]() |
![]() |
2 | 2 | ||||||
MIRT701144 | PANK1 | pantothenate kinase 1 | ![]() |
![]() |
2 | 2 | ||||||
MIRT712691 | NUDT7 | nudix hydrolase 7 | ![]() |
![]() |
2 | 2 | ||||||
MIRT715505 | MAZ | MYC associated zinc finger protein | ![]() |
![]() |
2 | 2 | ||||||
MIRT722509 | PTPRC | protein tyrosine phosphatase, receptor type C | ![]() |
![]() |
2 | 2 | ||||||
MIRT724982 | TNS1 | tensin 1 | ![]() |
![]() |
2 | 2 |
miRNA-Drug Associations | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
miRNA-Drug Resistance Associations | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|