pre-miRNA Information | |
---|---|
pre-miRNA | mmu-mir-7a-1 |
Genomic Coordinates | chr13: 58392779 - 58392886 |
Description | Mus musculus miR-7a-1 stem-loop |
Comment | miR-7a (previously named miR-7) was predicted by computational methods using conservation between mouse, human and Fugu rubripes sequences . The ends of the miRNA may be offset with respect to previous annotations. |
RNA Secondary Structure | |
pre-miRNA | mmu-mir-7a-2 |
Genomic Coordinates | chr7: 78888277 - 78888373 |
Description | Mus musculus miR-7a-2 stem-loop |
Comment | miR-7a (previously named miR-7) was predicted by computational methods using conservation between mouse, human and Fugu rubripes sequences . The ends of the miRNA may be offset with respect to previous annotations. |
RNA Secondary Structure |
Mature miRNA Information | |
---|---|
Mature miRNA | mmu-miR-7a-5p |
Sequence | 19| UGGAAGACUAGUGAUUUUGUUGU |41 |
Evidence | Experimental |
Experiments | Cloned |
Putative Targets |
Gene Information | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gene Symbol | Nav2 | ||||||||||||||||||||
Synonyms | 5330421F07Rik, AU067780, BQ960892, HELAD1, POMFIL2, RAINB1, RAINB2, Unc53H2, mKIAA3015 | ||||||||||||||||||||
Description | neuron navigator 2 | ||||||||||||||||||||
Transcript | NM_001111016 | ||||||||||||||||||||
Other Transcripts | NM_175272 | ||||||||||||||||||||
Expression | |||||||||||||||||||||
Putative miRNA Targets on Nav2 | |||||||||||||||||||||
3'UTR of Nav2 (miRNA target sites are highlighted) |
>Nav2|NM_001111016|3'UTR 1 TGGAGACTCCCCCACTCTCCCTCGCTCCATCCCACCCCGCATCCTCCACTTCGTTCTGAAGATGACTTCCTGAGCCAGCC 81 CTGGCTGCCACAGCCTTGAAGCCAGAGCAGAGTAGCGGGAGCAGGAACCCCTCCTCGTCCCTTGCTCTCTGCCCTCGCAT 161 GAGCAGCCCAGGACCTCCCCTTCCGACAGTGACAACTGTACTAGCCTCTCTTCTACCCTCATCCTCGTTTTTTTTTTTGC 241 CTTGTTGCCGTGACCTCCGTGAGACACTGAAAATACTTCATGGGAAAGGATCCTCACTGTTGAAATATAAAGGGTTTAAA 321 TGGAAATTTTAAACGTAAGATTCCACTTGGTGCCCTGAAACCCAACAGCATCCCTCCACATACTACCCCCCAGACAGAAA 401 AGACTAAACTCAACTTGGAAACACAGACAGCAGGGCTTACTCCCAGCACAGACCCCGCCAGTTTGGGTCTGGCCACCAGC 481 ACCCCAGAGCCATGCCACCCACCCTCCATGGAAGAATTGGTGCTAACGAGGGCGCCTGCTTGGAGCGCCACCCAGGGACA 561 CCCATACATCACATGTCTCTGTTTTCCACATGGTGCTCGCCTTCCCGAGAGGTATTCTGTCTATTCCAGTGCACCCCTCC 641 CCCTGTTCCCGGCCCATCATCCCTCCCACCCACCCCCACCCCCACCCCCATGATCTGTGAGAGCAAGTGAAGATGCAAGA 721 ATGTGAGTGAGCAGATGGGGCTAGCAACACAGAAAAGCGCGCCTGTTTCCTTCGTCTGTCTAAATGGTCAGGTTTCTGTC 801 CGCAAACACTGTGTACTGTACAAGTAGTTCTTTGGAGAACTATCAACCCCTGCCTGTGTCTGCCTTTCTTCCTGGTTGAT 881 TGTGAAGGCCCCTTTTCCCCAACCCCCACTCCCTTGACCAGAATTAGTCCTTTGGTGAAAGCAAGAACTAAGTAGAGTTT 961 GCCTCCTCCCTCAGCCTGGGTTTTCAGTGTCCACTGTCACAGTTCTGGGCCCTCGACACCTCCTTCCGGGGTTGTGTGGG 1041 CATCCATATCCTTTCAGATAGAGGAGGACTAGTTCTCCTCCTGTGGGTGAGCCATGGACCTCGCCTTTCCTTCTTGTCTC 1121 TGAGAGCTGAGAACCCCACAGCATCACCTTGGGCACCCCAGACCCCAGTTGCAGGAGGAGTTGACGATGCCCCCTCACCA 1201 AAAGCTGGCACTTTCCTCAGATCCAATGTGACACAGCTTAGCCAGGGAGGGGCGGCCACCCTTCCCAGAAACCCGGCCAG 1281 CCGTGCCTCCGTCCCGATGAGCCTTGCCTGACCTCTTCGGTGCTGACCGCCCCCATGCAATGCCTTACTGGTTTTGTGCT 1361 GACCGTGTCCATTCACATGAGTGTTGTGCCTGCCTGGGGTTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTG 1441 TGTGTGTGTGTGTGTGTGTCTTCCCCATCGAAGTAAACAGGGCTATAAGTCATCTATCCATGAAGAGAACACAAGTTGCC 1521 GACCTCTCATCTCAGAGAGTCATCTATGTGGATGTATGATTGGGGGGGGGGGAGGGGGAGGGAGGGAGGGAGAGAGAGAG 1601 AGAGAGAGAGAGAGAGAGAGAGATGTTTTTTAGGCTCCTATCGGTCTCCAGCCAACAAATTCACTGGACAGTGACCCCAC 1681 AAGTCCATTCAACCTTGCAAATTTGTACTCTAGGACACACCCCTCAGTGTGCCATGGCTTCAGCACACTGGTGTCCTCTT 1761 CACCGTATGGACATCTTTGAGCTCTTTGTGTTTTATAGAAACTTTCCTGGCCCCACCGAGGGTGTCTCTGTTAACGATCA 1841 GGGTTTTTAACCTCATCTTTGATGTTCCATTCTTGAACGTTTGTCTTTTTTTTTTTTTTTTTTTTTCTTACCCTAAGAGC 1921 TTGGCCCAAAACTGCTCGCTTTCTTTGGAATGGCACTGATTTTCTTCCTCATTGAAAGGAACAAGAATGTGTCCTGCTAA 2001 CTGGTAACTAGAAACATTTCCGTTCCCTGCTGTAAGCCCAGACCCAGCCTGCCTTTGCTACTAGTGTGGATGTGAGTGTG 2081 TCTTCTGTTGTTTTGTTTGTAATAAAAGTTTCAAACCACGTGTCTAGCCTGTGACCAGGGCCAAACCCTGAGCCTTCCAG 2161 TGCCCCTGAAGGGTAGCCCTTCTCAGTCTTGTCTCCCAGCAACGGCCGTACACTCTCATACTGTGAATTTGGGAGGTAGG 2241 AAAATCGAACCCCTCCTCAACATAGTTTTCTCAGTCACCTTAGGAGTACACCGCACCAACATTGCTTAAAACTGTTTCCT 2321 TAGCAACACCCTCTCCCCACTCTCCACGCCCAGATGTCTCTCCCAGCCCACCCAGGATCGCAACAGCAGCCTGTGTACCC 2401 ATTGCTGCCTGACTTGGTTCTGTAGCCCCAGAGTGCCTCCTGGCTCAGCCACCTTCCCGAAACACTGGGAAGTGGGGCTG 2481 TCTGAAAGGCACATTTCCGACTGGGTCATGATTTTCCTTTTAAGTTGCTCGACCTTGGACAAAATGACTTTGTACCCATT 2561 TAGAACTCTGTCTGCAATGCTTCCATTTTGCCTTTTTCTATAGATAGGCTACTTTTGAAATCCTATGCAATGCCGCTGCT 2641 GAGGTACCAGGGGGAGCCAAAAGTTTTCTTCCCAGGAGGCCAAGAATTCTACAGAAGTCCTTTTAACTTAAGGTTGGGGG 2721 TGGGGTGGGAGTGTGACAAGGGCAAGACTCACCCAGATCTTCCTCTGACCTTGGGGACATTTTAAATTTTATTGTTTAAT 2801 GCTCGACTTTAAAATTCTGTGTGCTCAAATTCCAACCCTGGCAAATCTACTTCAAAAGCAAAAACAGTCCAACTTTGCGG 2881 ATATCGAATGGGAGGTTTGCTGTTTTGACCTGCTTGTCTCGAGCCGAGCGGTTTATGAAACATGTTCTATAAGATGTACA 2961 TTTTTTTTTTCATTGTAACATAGAAATTGTAAATATTCGATGAAACTGCTGCATTTTGATGACTTTTTTCTAGCCATTTT 3041 TAAAGAGAAAACTAGGAATTGAGTATTTTGTGTACGGTATGTTCCCCACCACACCACCACCACCCCTCCATCCCTCTCCC 3121 CCCTCTATTTAATTCTCATTTGTCATCAGGTTTTTGGGTTTGAGAACAATCCGCTGGAGATCTGCCCCATGTCATAGAGA 3201 ATAAAGCTGATGATTGTACCAGTCTTAAATTATTCATGATCCAATAAACTTAATGCTTATTTATTCAAAAAAAAAAAAAA 3281 A Target sites
Provided by authors
Predicted by miRanda
DRVs
SNPs
DRVs & SNPs
|
||||||||||||||||||||
miRNA-target interactions (Predicted by miRanda) |
|
Experimental Support 1 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | Brain (Mouse neocortex) |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
HITS-CLIP data was present in Chi_BrainC_130_50. RNA binding protein: AGO. Condition:Brain C 2A8 P13 130 KD
... - Chi SW; Zang JB; Mele A; Darnell RB, 2009, Nature. |
Article |
- Chi SW; Zang JB; Mele A; Darnell RB - Nature, 2009
MicroRNAs (miRNAs) have critical roles in the regulation of gene expression; however, as miRNA activity requires base pairing with only 6-8 nucleotides of messenger RNA, predicting target mRNAs is a major challenge. Recently, high-throughput sequencing of RNAs isolated by crosslinking immunoprecipitation (HITS-CLIP) has identified functional protein-RNA interaction sites. Here we use HITS-CLIP to covalently crosslink native argonaute (Ago, also called Eif2c) protein-RNA complexes in mouse brain. This produced two simultaneous data sets-Ago-miRNA and Ago-mRNA binding sites-that were combined with bioinformatic analysis to identify interaction sites between miRNA and target mRNA. We validated genome-wide interaction maps for miR-124, and generated additional maps for the 20 most abundant miRNAs present in P13 mouse brain. Ago HITS-CLIP provides a general platform for exploring the specificity and range of miRNA action in vivo, and identifies precise sequences for targeting clinically relevant miRNA-mRNA interactions.
LinkOut: [PMID: 19536157]
|
Experimental Support 2 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | Liver |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
HITS-CLIP data was present in ERR266281. RNA binding protein: AGO2. Condition:A_Liver partial hapatectomy 48h
HITS-CLIP data was present in ERR266292. RNA binding protein: AGO2. Condition:B_Liver partial hapatectomy 48h
... - Schug J; McKenna LB; Walton G; Hand N; et al., 2013, BMC genomics. |
Article |
- Schug J; McKenna LB; Walton G; Hand N; et al. - BMC genomics, 2013
BACKGROUND: Validation of physiologic miRNA targets has been met with significant challenges. We employed HITS-CLIP to identify which miRNAs participate in liver regeneration, and to identify their target mRNAs. RESULTS: miRNA recruitment to the RISC is highly dynamic, changing more than five-fold for several miRNAs. miRNA recruitment to the RISC did not correlate with changes in overall miRNA expression for these dynamically recruited miRNAs, emphasizing the necessity to determine miRNA recruitment to the RISC in order to fully assess the impact of miRNA regulation. We incorporated RNA-seq quantification of total mRNA to identify expression-weighted Ago footprints, and developed a microRNA regulatory element (MRE) prediction algorithm that represents a greater than 20-fold refinement over computational methods alone. These high confidence MREs were used to generate candidate 'competing endogenous RNA' (ceRNA) networks. CONCLUSION: HITS-CLIP analysis provide novel insights into global miRNA:mRNA relationships in the regenerating liver.
LinkOut: [PMID: 23597149]
|
Experimental Support 3 for Functional miRNA-Target Interaction | |
---|---|
miRNA:Target | ---- |
Validation Method |
|
Conditions | C2C12 |
Location of target site | 3'UTR |
Tools used in this research | TargetScan , miRTarCLIP , Piranha |
Original Description (Extracted from the article) |
...
HITS-CLIP data was present in GSM1385342. RNA binding protein: 聽AGO2. Condition:C2C12_GM_Ago2_CLIP-Seq_myoblast
HITS-CLIP data was present in GSM1385343. RNA binding protein: 聽AGO2. Condition:C2C12_DM_Ago2_CLIP-Seq_myotubes
... - Zhang X; Zuo X; Yang B; Li Z; Xue Y; Zhou et al., 2014, Cell. |
Article |
- Zhang X; Zuo X; Yang B; Li Z; Xue Y; Zhou et al. - Cell, 2014
MicroRNAs are well known to mediate translational repression and mRNA degradation in the cytoplasm. Various microRNAs have also been detected in membrane-compartmentalized organelles, but the functional significance has remained elusive. Here, we report that miR-1, a microRNA specifically induced during myogenesis, efficiently enters the mitochondria where it unexpectedly stimulates, rather than represses, the translation of specific mitochondrial genome-encoded transcripts. We show that this positive effect requires specific miR:mRNA base-pairing and Ago2, but not its functional partner GW182, which is excluded from the mitochondria. We provide evidence for the direct action of Ago2 in mitochondrial translation by crosslinking immunoprecipitation coupled with deep sequencing (CLIP-seq), functional rescue with mitochondria-targeted Ago2, and selective inhibition of the microRNA machinery in the cytoplasm. These findings unveil a positive function of microRNA in mitochondrial translation and suggest a highly coordinated myogenic program via miR-1-mediated translational stimulation in the mitochondria and repression in the cytoplasm.
LinkOut: [PMID: 25083871]
|
41 mmu-miR-7a-5p Target Genes:
Functional analysis:
ID | Target | Description | Validation methods | |||||||||
Strong evidence | Less strong evidence | |||||||||||
MIRT003971 | Hells | helicase, lymphoid specific | 2 | 1 | ||||||||
MIRT053031 | Eif4e | eukaryotic translation initiation factor 4E | 2 | 1 | ||||||||
MIRT053032 | Rps6kb1 | ribosomal protein S6 kinase, polypeptide 1 | 2 | 1 | ||||||||
MIRT053033 | Mapkap1 | mitogen-activated protein kinase associated protein 1 | 2 | 1 | ||||||||
MIRT053034 | Mknk2 | MAP kinase-interacting serine/threonine kinase 2 | 2 | 1 | ||||||||
MIRT053035 | Mknk1 | MAP kinase-interacting serine/threonine kinase 1 | 2 | 1 | ||||||||
MIRT577318 | Zfp26 | zinc finger protein 26 | 1 | 3 | ||||||||
MIRT578104 | Nup133 | nucleoporin 133 | 1 | 1 | ||||||||
MIRT579456 | Acsm2 | acyl-CoA synthetase medium-chain family member 2 | 1 | 1 | ||||||||
MIRT581045 | Sike1 | suppressor of IKBKE 1 | 1 | 1 | ||||||||
MIRT582290 | Nav2 | neuron navigator 2 | 1 | 3 | ||||||||
MIRT583587 | Fat3 | FAT atypical cadherin 3 | 1 | 1 | ||||||||
MIRT584159 | Creb1 | cAMP responsive element binding protein 1 | 1 | 1 | ||||||||
MIRT586660 | Mbp | myelin basic protein | 1 | 1 | ||||||||
MIRT587038 | Milr1 | mast cell immunoglobulin like receptor 1 | 1 | 1 | ||||||||
MIRT587579 | Cpm | carboxypeptidase M | 1 | 1 | ||||||||
MIRT587868 | Btn1a1 | butyrophilin, subfamily 1, member A1 | 1 | 3 | ||||||||
MIRT589879 | Hdac7 | histone deacetylase 7 | 1 | 1 | ||||||||
MIRT590087 | Evi2b | ecotropic viral integration site 2b | 1 | 1 | ||||||||
MIRT590957 | Stxbp2 | syntaxin binding protein 2 | 1 | 1 | ||||||||
MIRT591080 | Polr2l | polymerase (RNA) II (DNA directed) polypeptide L | 1 | 1 | ||||||||
MIRT591342 | Gla | galactosidase, alpha | 1 | 1 | ||||||||
MIRT593125 | Cry2 | cryptochrome 2 (photolyase-like) | 1 | 1 | ||||||||
MIRT594875 | Magt1 | magnesium transporter 1 | 1 | 1 | ||||||||
MIRT598790 | Gmeb1 | glucocorticoid modulatory element binding protein 1 | 1 | 1 | ||||||||
MIRT599234 | Dcaf10 | DDB1 and CUL4 associated factor 10 | 1 | 1 | ||||||||
MIRT600587 | Nipal4 | NIPA-like domain containing 4 | 1 | 1 | ||||||||
MIRT600617 | Mtfmt | mitochondrial methionyl-tRNA formyltransferase | 1 | 1 | ||||||||
MIRT600913 | Faim2 | Fas apoptotic inhibitory molecule 2 | 1 | 1 | ||||||||
MIRT600985 | Ddx27 | DEAD (Asp-Glu-Ala-Asp) box polypeptide 27 | 1 | 1 | ||||||||
MIRT602025 | Moap1 | modulator of apoptosis 1 | 1 | 1 | ||||||||
MIRT604224 | Clca2 | chloride channel accessory 3A2 | 1 | 1 | ||||||||
MIRT604422 | Acmsd | amino carboxymuconate semialdehyde decarboxylase | 1 | 1 | ||||||||
MIRT604505 | Trappc13 | trafficking protein particle complex 13 | 1 | 1 | ||||||||
MIRT731319 | Sp1 | trans-acting transcription factor 1 | 1 | 1 | ||||||||
MIRT731320 | Parp1 | poly (ADP-ribose) polymerase family, member 1 | 1 | 1 | ||||||||
MIRT731919 | Nlrp3 | NLR family, pyrin domain containing 3 | 1 | 1 | ||||||||
MIRT732184 | Herpud2 | HERPUD family member 2 | 3 | 1 | ||||||||
MIRT734898 | Pax6 | paired box 6 | 3 | 0 | ||||||||
MIRT734899 | Neurog2 | neurogenin 2 | 3 | 0 | ||||||||
MIRT734900 | Neurod1 | neurogenic differentiation 1 | 3 | 0 |
miRNA-Drug Associations | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
miRNA-Drug Resistance Associations | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|